Adewumi, A.O.; Adeleke, O.J. A survey of recent advances in vehicle routing problems. Int. J. Syst. Assur. Eng. Manag. 2018, 9, 155–172. [CrossRef]
- Albadrani, A.; Alghayadh, F.; Zohdy, M.A.; Aloufi, E.; Olawoyin, R. Performance and Predicting of Inbound Logistics Processes Using Machine Learning. In Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 27–30 January 2021; pp. 790–795. Sustainability 2022, 14, 5329 14 of 16
Paper not yet in RePEc: Add citation now
Alcaraz, J.J.; Caballero-Arnaldos, L.; Vales-Alonso, J. Rich vehicle routing problem with last-mile outsourcing decisions. Transp. Res. Part E: Logist. Transp. Rev. 2019, 129, 263–286. [CrossRef]
Andelmin, J.; Bartolini, E. An exact algorithm for the green vehicle routing problem. Transp. Sci. 2017, 51, 1288–1303. [CrossRef]
- Available online: http://www.interregeurope.eu/fileadmin/user_upload/plp_uploads/policy_briefs/Sustainable_urban_ logistics.pdf (accessed on 15 March 2022).
Paper not yet in RePEc: Add citation now
- Avci, M.; Topaloglu, S. A hybrid metaheuristic algorithm for heterogeneous vehicle routing problem with simultaneous pickup and delivery. Expert Syst. Appl. 2016, 53, 160–171. [CrossRef]
Paper not yet in RePEc: Add citation now
Baldacci, R.; Mingozzi, A.; Roberti, R. Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints. Eur. J. Oper. Res. 2012, 218, 1–6. [CrossRef]
- Baller, A.C.; Dabia, S.; Dullaert, W.E.H.; Vigo, D. The vehicle routing problem with partial outsourcing. Transp. Sci. 2020, 54, 1034–1052. [CrossRef]
Paper not yet in RePEc: Add citation now
- Berhan, E.; Beshah, B.; Kitaw, D.; Abraham, A. Stochastic Vehicle Routing Problem: A Literature Survey. J. Inf. Knowl. Manag. 2014, 13, 9848104. [CrossRef]
Paper not yet in RePEc: Add citation now
- Bernardo, M.; Pannek, J. Robust Solution Approach for the Dynamic and Stochastic Vehicle Routing Problem. J. Adv. Transp. 2018, 2018, 9848104. [CrossRef]
Paper not yet in RePEc: Add citation now
- Braekers, K.; Ramaekers, K.; Van Nieuwenhuyse, I. The vehicle routing problem: State of the art classification and review. Comput. Ind. Eng. 2016, 99, 300–313. [CrossRef]
Paper not yet in RePEc: Add citation now
- Bricher, D.; Müller, A. A Supervised Machine Learning Approach for Intelligent Process Automation in Container Logistics. J. Comput. Inf. Sci. Eng. 2020, 20, 031006. [CrossRef]
Paper not yet in RePEc: Add citation now
- Caceres-Cruz, J.; Arias, P.; Guimarans, D.; Riera, D.; Juan, A.A. Rich vehicle routing problem: Survey. ACM Comput. Surv. 2014, 47, 1–28. [CrossRef]
Paper not yet in RePEc: Add citation now
- Caggiani, L.; Colovic, A.; Prencipe, L.P.; Ottomanelli, M. A green logistics solution for last-mile deliveries considering e-vans and e-cargo bikes. Transp. Res. Procedia 2021, 52, 75–82. [CrossRef] Sustainability 2022, 14, 5329 15 of 16
Paper not yet in RePEc: Add citation now
- Calabrò, G.; Le Pira, M.; Giuffrida, N.; Fazio, M.; Inturri, G.; Ignaccolo, M. Modelling the dynamics of fragmented vs. consolidated last-mile e-commerce deliveries via an agent-based model. Transp. Res. Procedia 2022, 62, 155–162. [CrossRef]
Paper not yet in RePEc: Add citation now
Cattaruzza, D.; Absi, N.; Feillet, D. The multi-trip vehicle routing problem with time windows and release dates. Transp. Sci. 2016, 50, 676–693. [CrossRef]
Cattaruzza, D.; Absi, N.; Feillet, D.; Vidal, T. A memetic algorithm for the Multi Trip Vehicle Routing Problem. Eur. J. Oper. Res. 2014, 236, 833–848. [CrossRef]
- Chu, J.C.; Yan, S.; Huang, H.J. A Multi-Trip Split-Delivery Vehicle Routing Problem with Time Windows for Inventory Replenishment Under Stochastic Travel Times. Netw. Spat. Econ. 2017, 17, 41–68. [CrossRef]
Paper not yet in RePEc: Add citation now
Costa, L.; Contardo, C.; Desaulniers, G. Exact branch-price-and-cut algorithms for vehicle routing. Transp. Sci. 2019, 53, 946–985. [CrossRef]
- DHL. Logistics Trend Radar 5th Edition. 2021. Available online: https://www.dhl.com/global-en/home/insights-andinnovation /insights/logistics-trend-radar.html (accessed on 15 March 2022).
Paper not yet in RePEc: Add citation now
- EC. E-Commerce Statistics for Individuals. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index. php/E-commerce_statistics_for_individuals (accessed on 15 March 2022).
Paper not yet in RePEc: Add citation now
- El Ouadi, J.; Errousso, H.; Benhadou, S.; Medromi, H.; Malhene, N. A Machine-Learning Based Approach for Zoning Urban Area in Consolidation Schemes Context. In Proceedings of the 2020 IEEE 13th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA), Fez, Morocco, 2–4 December 2020; pp. 1–7.
Paper not yet in RePEc: Add citation now
- Elshaer, R.; Awad, H. A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants. Comput. Ind. Eng. 2020, 140, 106242. [CrossRef]
Paper not yet in RePEc: Add citation now
- Eshtehadi, R.; Demir, E.; Huang, Y. Solving the vehicle routing problem with multi-compartment vehicles for city logistics. Comput. Oper. Res. 2020, 115, 104859. [CrossRef]
Paper not yet in RePEc: Add citation now
- Euchi, J.; Yassine, A.; Chabchoub, H. The dynamic vehicle routing problem: Solution with hybrid metaheuristic approach. Swarm Evol. Comput. 2015, 21, 41–53. [CrossRef]
Paper not yet in RePEc: Add citation now
- Feng, T.; Timmermans, H.J.P. Detecting activity type from GPS traces using spatial and temporal information. Eur. J. Transp. Infrastruct. Res. 2015, 15, 662–674. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ganji, M.; Kazemipoor, H.; Hadji Molana, S.M.; Sajadi, S.M. A green multi-objective integrated scheduling of production and distribution with heterogeneous fleet vehicle routing and time windows. J. Clean. Prod. 2020, 259, 120824. [CrossRef]
Paper not yet in RePEc: Add citation now
- Gao, M.; Feng, Q. Modeling and Forecasting of Urban Logistics Demand Based on Support Vector Machine. In Proceedings of the 2009 Second International Workshop on Knowledge Discovery and Data Mining, Moscow, Russia, 23–25 January 2009; pp. 793–796.
Paper not yet in RePEc: Add citation now
- Ghilas, V.; Demir, E.; Van Woensel, T. An adaptive large neighborhood search heuristic for the Pickup and Delivery Problem with Time Windows and Scheduled Lines. Comput. Oper. Res. 2016, 72, 12–30. [CrossRef]
Paper not yet in RePEc: Add citation now
- Goel, R.K.; Bansal, S.R. Hybrid algorithms for rich vehicle routing problems: A survey. In Smart Delivery Systems: Solving Complex Vehicle Routing Problems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 157–184. [CrossRef]
Paper not yet in RePEc: Add citation now
- Golden, B.L.; Raghavan, S.; Wasil, E.A. The Vehicle Routing Problem: Latest Advances and New Challenges; Springer: New York, NY, USA, 2008.
Paper not yet in RePEc: Add citation now
- Grabenschweiger, J.; Doerner, K.F.; Hartl, R.F.; Savelsbergh, M.W.P. The vehicle routing problem with heterogeneous locker boxes. Cent. Eur. J. Oper. Res. 2021, 29, 113–142. [CrossRef]
Paper not yet in RePEc: Add citation now
Grangier, P.; Gendreau, M.; Lehuédé, F.; Rousseau, L.M. An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization. Eur. J. Oper. Res. 2016, 254, 80–91. [CrossRef]
- Gu, W.; Cattaruzza, D.; Ogier, M.; Semet, F. Adaptive large neighborhood search for the commodity constrained split delivery VRP. Comput. Oper. Res. 2019, 112, 104761. [CrossRef]
Paper not yet in RePEc: Add citation now
- Guermazi, Y.; Sellami, S.; Boucelma, O. Address Validation in Transportation and Logistics: A Machine Learning Based Entity Matching Approach. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Ghent, Belgium, 14–18 September 2020; Springer: Cham, Switzerland, 2020; pp. 320–334.
Paper not yet in RePEc: Add citation now
- Gutierrez-Rodríguez, A.E.; Conant-Pablos, S.E.; Ortiz-Bayliss, J.C.; Terashima-Marín, H. Selecting meta-heuristics for solving vehicle routing problems with time windows via meta-learning. Expert Syst. Appl. 2019, 118, 470–481. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hassanzadeh, A.; Rasti-Barzoki, M. Minimizing total resource consumption and total tardiness penalty in a resource allocation supply chain scheduling and vehicle routing problem. Appl. Soft Comput. J. 2017, 58, 307–323. [CrossRef]
Paper not yet in RePEc: Add citation now
Hess, A.; Spinler, S.; Winkenbach, M. Real-time demand forecasting for an urban delivery platform. Transp. Res. Part E Logist. Transp. Rev. 2021, 145, 102147. [CrossRef]
- Hosseinabadi, A.A.; Slowik, A.; Sadeghilalimi, M.; Farokhzad, M.; Babazadeh Shareh, M.; Sangaiah, A.K. An Ameliorative Hybrid Algorithm for Solving the Capacitated Vehicle Routing Problem. IEEE Access 2019, 7, 175454–175465. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jabir, E.; Panicker, V.V.; Sridharan, R. Design and development of a hybrid ant colony-variable neighbourhood search algorithm for a multi-depot green vehicle routing problem. Transp. Res. Part D Transp. Environ. 2017, 57, 422–457. [CrossRef] Sustainability 2022, 14, 5329 16 of 16
Paper not yet in RePEc: Add citation now
- Jozefowiez, N.; Semet, F.; Talbi, E.G. Multi-objective vehicle routing problems. Eur. J. Oper. Res. 2008, 189, 293–309. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kheirkhahzadeh, M.; Barforoush, A.A. A hybrid algorithm for the vehicle routing problem. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation, CEC 2009, Trondheim, Norway, 18–21 May 2009; pp. 1791–1798. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kiba-Janiak, M.; Marcinkowski, J.; Jagoda, A.; Skowrońska, A. Sustainable last mile delivery on e-commerce market in cities from the perspective of various stakeholders. Literature review. Sustain. Cities Soc. 2021, 71, 102984. [CrossRef]
Paper not yet in RePEc: Add citation now
- Knoll, D.; Prüglmeier, M.; Reinhart, G. Predicting future inbound logistics processes using machine learning. Procedia CIRP 2016, 52, 145–150. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kretzschmar, J.; Gebhardt, K.; Theiß, C.; Schau, V. Range prediction models for e-vehicles in urban freight logistics based on machine learning. In International Conference on Data Mining and Big Data, Bali, Indonesia, 25–30 June 2016; Springer: Cham, Switzerland, 2016; pp. 175–184.
Paper not yet in RePEc: Add citation now
- Kumar, S.V.; Thansekhar, M.R.; Saravanan, R.; Amali, M.J.S. Demonstrating the importance of using total time balance instead of route balance on a multi-objective vehicle routing problem with time windows. Int. J. Adv. Manuf. Technol. 2018, 98, 1287–1306. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kumar, S.V.; Thansekhar, M.R.; Saravanan, R.; Amali, M.J.S. Solving multi-objective vehicle routing problem with time windows by FAGA. Procedia Eng. 2014, 97, 2176–2185. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lagos, C.; Guerrero, G.; Cabrera, E.; Moltedo-Perfetti, A.S.; Johnson, F.; Paredes, F. An improved particle swarm optimization algorithm for the VRP with simultaneous pickup and delivery and time windows. IEEE Lat. Am. Trans. 2018, 16, 1732–1740. [CrossRef]
Paper not yet in RePEc: Add citation now
Lahyani, R.; Khemakhem, M.; Semet, F. Rich vehicle routing problems: From a taxonomy to a definition. Eur. J. Oper. Res. 2015, 241, 1–14. [CrossRef]
- Lickert, H.; Wewer, A.; Dittmann, S.; Bilge, P.; Dietrich, F. Selection of Suitable Machine Learning Algorithms for Classification Tasks in Reverse Logistics. Procedia CIRP 2021, 96, 272–277. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lin, N.; Shi, Y.; Zhang, T.; Wang, X. An Effective Order-Aware Hybrid Genetic Algorithm for Capacitated Vehicle Routing Problems in Internet of Things. IEEE Access 2019, 7, 86102–86114. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lin, S.W.; Lee, Z.J.; Ying, K.C.; Lee, C.Y. Applying hybrid meta-heuristics for capacitated vehicle routing problem. Expert Syst. Appl. 2009, 36, 1505–1512. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, C.; Zhang, Z.; Su, X.; Qin, H. A hybrid algorithm for the vehicle routing problem with compatibility constraints. In Proceedings of the 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Zhuhai, China, 27–29 March 2018; pp. 1–6. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, K.; Li, N.; Kolmanovsky, I.; Girard, A. A vehicle routing problem with dynamic demands and restricted failures solved using stochastic predictive control. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 1885–1890. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, S.C.; Lu, M.C.; Chung, C.H. A hybrid heuristic method for the periodic inventory routing problem. Int. J. Adv. Manuf. Technol. 2016, 85, 2345–2352. [CrossRef]
Paper not yet in RePEc: Add citation now
Marcucci, E.; Gatta, V.; Le Pira, M.; Hansson, L.; Bråthen, S. Digital Twins: A Critical Discussion on Their Potential for Supporting Policy-Making and Planning in Urban Logistics. Sustainability 2020, 12, 10623. [CrossRef]
- Mavrovouniotis, M.; Yang, S. Ant algorithms with immigrants schemes for the dynamic vehicle routing problem. Inf. Sci. 2015, 294, 456–477. [CrossRef]
Paper not yet in RePEc: Add citation now
Mor, A.; Speranza, M.G. Vehicle routing problems over time: A survey. 4OR 2020, 18, 129–149. [CrossRef]
- Okulewicz, M.; Mańdziuk, J. A metaheuristic approach to solve Dynamic Vehicle Routing Problem in continuous search space. Swarm Evol. Comput. 2019, 48, 44–61. [CrossRef]
Paper not yet in RePEc: Add citation now
Orenstein, I.; Raviv, T.; Sadan, E. Flexible parcel delivery to automated parcel lockers: Models, solution methods and analysis. EURO J. Transp. Logist. 2019, 8, 683–711. [CrossRef]
Oyola, J.; Arntzen, H.; Woodruff, D.L. The stochastic vehicle routing problem, a literature review, part I: Models. EURO J. Transp. Logist. 2018, 7, 193–221. [CrossRef]
Oyola, J.; Arntzen, H.; Woodruff, D.L. The stochastic vehicle routing problem, a literature review, Part II: Solution methods. EURO J. Transp. Logist. 2017, 6, 349–388. [CrossRef]
- Perboli, G.; Rosano, M.; Saint-Guillain, M.; Rizzo, P. Simulation–optimisation framework for City Logistics: An application on multimodal last-mile delivery. IET Intell. Transp. Syst. 2018, 12, 262–269. [CrossRef]
Paper not yet in RePEc: Add citation now
Pillac, V.; Gendreau, M.; Guéret, C.; Medaglia, A.L. A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 2013, 225, 1–11. [CrossRef]
- Psaraftis, H.N.; Wen, M.; Kontovas, C.A. Dynamic vehicle routing problems: Three decades and counting. Networks 2016, 67, 3–31. [CrossRef]
Paper not yet in RePEc: Add citation now
- Qin, G.; Tao, F.; Li, L. A vehicle routing optimization problem for cold chain logistics considering customer satisfaction and carbon emissions. Int. J. Environ. Res. Public Health 2019, 16, 576. [CrossRef]
Paper not yet in RePEc: Add citation now
- Rosen, O.; Medvedev, A. An on-line algorithm for anomaly detection in trajectory data. In Proceedings of the 2012 American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 1117–1122.
Paper not yet in RePEc: Add citation now
- Sarikan, S.S.; Ozbayoglu, A.M. Anomaly detection in vehicle traffic with image processing and machine learning. Procedia Comput. Sci. 2018, 140, 64–69. [CrossRef]
Paper not yet in RePEc: Add citation now
- Savic, M.; Lukic, M.; Danilovic, D.; Bodroski, Z.; Bajovic, D.; Mezei, I.; Vukobratovic, D.; Skrbic, S.; Jakovetic, D. Deep Learning Anomaly Detection for Cellular IoT with Applications in Smart Logistics. IEEE Access 2021, 9, 59406–59419. [CrossRef]
Paper not yet in RePEc: Add citation now
- Simeonova, L.; Wassan, N.; Salhi, S.; Nagy, G. The heterogeneous fleet vehicle routing problem with light loads and overtime: Formulation and population variable neighbourhood search with adaptive memory. Expert Syst. Appl. 2018, 114, 183–195. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sindhwani, V.; Sidahmed, H.; Choromanski, K.; Jones, B. Unsupervised Anomaly Detection for Self-flying Delivery Drones. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 186–192.
Paper not yet in RePEc: Add citation now
- Sumalee, A.; Uchida, K.; Lam, W.H.K. Stochastic multi-modal transport network under demand uncertainties and adverse weather condition. Transp. Res. Part C: Emerg. Technol. 2011, 19, 338–350. [CrossRef]
Paper not yet in RePEc: Add citation now
- Tamayo, S.; Combes, F.; Gaudron, A. Unsupervised machine learning to analyze City Logistics through Twitter. Transp. Res. Procedia 2020, 46, 220–228. [CrossRef]
Paper not yet in RePEc: Add citation now
Tian, Z.; Zhong, R.Y.; Vatankhah Barenji, A.; Wang, Y.T.; Li, Z.; Rong, Y. A blockchain-based evaluation approach for customer delivery satisfaction in sustainable urban logistics. Int. J. Prod. Res. 2021, 59, 2229–2249. [CrossRef]
- Van Eck, N.J.; Waltman, L. Text mining and visualization using VOSviewer. ISSI Newsl. 2011, 7, 50–54.
Paper not yet in RePEc: Add citation now
- Vidal, T.; Battarra, M.; Subramanian, A.; Erdogan, G. Hybrid metaheuristics for the Clustered Vehicle Routing Problem. Comput. Oper. Res. 2015, 58, 87–99. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, J.; Ren, W.; Zhang, Z.; Huang, H.; Zhou, Y. A Hybrid Multiobjective Memetic Algorithm for Multiobjective Periodic Vehicle Routing Problem with Time Windows. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 4732–4745. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, J.; Zhou, Y.; Wang, Y.; Zhang, J.; Chen CL, P.; Zheng, Z. Multiobjective Vehicle Routing Problems with Simultaneous Delivery and Pickup and Time Windows: Formulation, Instances, and Algorithms. IEEE Trans. Cybern. 2016, 46, 582–594. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wojtusiak, J.; Warden, T.; Herzog, O. Machine learning in agent-based stochastic simulation: Inferential theory and evaluation in transportation logistics. Comput. Math. Appl. 2012, 64, 3658–3665. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yan, X.; Xiao, B.; Xiao, Y.; Zhao, Z.; Ma, L.; Wang, N. Skill Vehicle Routing Problem with Time Windows Considering Dynamic Service Times and Time-Skill-Dependent Costs. IEEE Access 2019, 7, 77208–77221. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, H.; Zhang, Q.; Ma, L.; Zhang, Z.; Liu, Y. A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows. Inf. Sci. 2019, 490, 166–190. [CrossRef]
Paper not yet in RePEc: Add citation now
Zhao, M.; Ji, S.; Wei, Z. Risk prediction and risk factor analysis of urban logistics to public security based on PSO-GRNN algorithm. PLoS ONE 2020, 15, e0238443. [CrossRef] [PubMed]
- Zhao, S.; Sheng, Y.; Dong, Y.; Chang, E.I.; Xu, Y. Maskflownet: Asymmetric feature matching with learnable occlusion mask. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 6278–6287.
Paper not yet in RePEc: Add citation now