create a website

An Analysis of Residual Financial Contagion in Romania’s Banking Market for Mortgage Loans. (2023). Ionescu, Tefan ; Chiri, Nora ; Nica, Ionu ; Delcea, Camelia.
In: Sustainability.
RePEc:gam:jsusta:v:15:y:2023:i:15:p:12037-:d:1211596.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 97

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Acharya, V.V.; Pedersen, L.H.; Philippon, T.; Richardson, M. Measuring Systemic Risk. Rev. Financ. Stud. 2017, 30, 2–47. [CrossRef]
    Paper not yet in RePEc: Add citation now
  2. Addo, P.M.; Guegan, D.; Hassani, B. Credit Risk Analysis Using Machine and Deep Learning Models. Risks 2018, 6, 38. [CrossRef]

  3. Aggarwal, C.C. Neural Networks and Deep Learning; Springer International Publishing AG: Cham, Switzerland, 2018.
    Paper not yet in RePEc: Add citation now
  4. Al-Dosari, K.; Fetais, N.; Kucukvar, M. Artificial Intelligence and Cyber Defense System for Banking Industry: A qualitative study of AI applications and challenges. Cybern. Syst. J. 2022. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. Ali, A.; Abd Razak, S.; Othman, S.H.; Eisa, T.A.E.; Al-Dhaqm, A.; Nasser, M.; Elhassan, T.; Elshafie, H.; Saif, A. Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review. Appl. Sci. 2022, 12, 9637. [CrossRef]
    Paper not yet in RePEc: Add citation now
  6. Analytics Vidhaya. Understanding Distance Metrics Used in Machine Learning. Available online: https://www.analyticsvidhya. com/blog/2020/02/4-types-of-distance-metrics-in-machine-learning/ (accessed on 15 February 2023).
    Paper not yet in RePEc: Add citation now
  7. Analytics Vidhya. The Math Behind Logistic Regression. Available online: https://medium.com/analytics-vidhya/the-mathbehind -logistic-regression-c2f04ca27bca (accessed on 15 February 2023).
    Paper not yet in RePEc: Add citation now
  8. Axtell, R.L.; Farmer, J.D. Agent-Based Modeling in Economics and Finance: Past, Present, and Future; INET Oxford Working Paper No. 2022-10; Institute for New Economic Thinking: Oxford, UK, 2022. Available online: https://www.inet.ox.ac.uk/files/JEL-v2.0.pdf (accessed on 9 July 2023).

  9. Bookstaber, R. Agent-Based Models for Financial Crises. Annu. Rev. Financ. Econ. 2017, 9, 85–100. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
    Paper not yet in RePEc: Add citation now
  11. Bruch, E.; Atwell, J. Agent-Based Models in Empirical Social Research. Sociol. Methods Res. 2013, 44, 186–221. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  12. Bruner, R.F.; Miller, S.C. The first modern financial crises: The South Sea and Mississippi Bubbles in Historical Perspective. J. Appl. Corp. Financ. 2020, 32, 17–33. [CrossRef]

  13. Cambridge Dictionary. Available online: https://dictionary.cambridge.org/dictionary/english/contagion (accessed on 10 February 2023).
    Paper not yet in RePEc: Add citation now
  14. Carausu, D.N. Fianncial Contagion in the Recent Fiancial Crisis: Evidence form the Romanian Capital Market. In Ovidius University Annals, Economic Sciences Series; Ovidius University of Constantza, Faculty of Economic Sciences: Constant , a, Romania, 2017; Volume XVII, Issue 2.
    Paper not yet in RePEc: Add citation now
  15. Chakraborty, S. Developing Agent-Based Models to Study Financial Markets. Digital Commons @ University of South Florida. Available online: https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=10119&context=etd (accessed on 16 February 2023).
    Paper not yet in RePEc: Add citation now
  16. Chan-Lau, J.A. ABBA: An Agent-Based Model of Banking System; IMF Working Paper/17/136; International Monetary Fund: Bretton Woods, NH, USA, 2017.

  17. Chatterjee, A.; Cao, Q.; Sajadi, A.; Ravandi, B. Deterministic Random Walk Model in NetLogo and the Identification of Asymmetric Saturation Time in Random Graph. Appl. Netw. Sci. 2023, 8, 33. [CrossRef]
    Paper not yet in RePEc: Add citation now
  18. Costanzino, N.; Curran, M. A Simple Traffic Light Approach to Backtesting Expected Shortfall. Risks 2018, 6, 2. [CrossRef]

  19. Cotfas, L.-A.; Delcea, C.; Iancu, L.-D.; Ioanas, C.; Ponsiglione, C. Large Event Halls Evacuation Using an Agent-Based Modeling Approach. IEEE Access 2022, 10, 49359–49384. [CrossRef]
    Paper not yet in RePEc: Add citation now
  20. Cotfas, L.-A.; Delcea, C.; Mancini, S.; Ponsiglione, C.; Vitiello, L. An Agent-Based Model for Cruise Ship Evacuation Considering the Presence of Smart Technologies on Board. Expert Syst. Appl. 2023, 214, 119124. [CrossRef]
    Paper not yet in RePEc: Add citation now
  21. De Jesus, C.; Willows, G.D.; Olivier, A.M. The influence of the market on inflation, not the other way around. Invest. Anal. J. 2020, 49, 79–91. [CrossRef]
    Paper not yet in RePEc: Add citation now
  22. DeAngelis, D.L.; Diaz, S.G. Decision-Making in Agent-Based Modeling: A current review and future prospectus. Front. Ecol. Evol. Sec. Behav. Evol. Ecol. 2018, 6. [CrossRef]
    Paper not yet in RePEc: Add citation now
  23. Delcea, C.; Bradea, I.A. Economic Cybernetics. An Equation-Based Modeling and Agent-Based Modeling Approach. Universitara Printinghouse: Bucharest, Romania, 2017, ISBN 978-606-28-0629-3.
    Paper not yet in RePEc: Add citation now
  24. Delcea, C.; Cotfas, L.-A.; Salari, M.; Milne, R.J. Investigating the Random Seat Boarding Method without Seat Assignments with Common Boarding Practices Using an Agent-Based Modeling. Sustainability 2018, 10, 4623. [CrossRef]

  25. Dhieb, N.; Ghazzai, H.; Besbes, H.; Massoud, Y. Extreme Gradient Boosting Machine Learning Algorithm for Safe Auto Insurance Operations. In Proceedings of the 2019 IEEE International Conference on Vehicular Electronics and Safety, Cairo, Egypt, 4–6 September 2019.
    Paper not yet in RePEc: Add citation now
  26. Economic Times. What Is Commercial Bank. Available online: https://economictimes.indiatimes.com/definition/commercialbank (accessed on 16 February 2023).
    Paper not yet in RePEc: Add citation now
  27. Edgar, T.; Manz, D.O. Chapter 6—Machine Learning. In Research Methods for Cyber Security; Syngress: Oxford, UK, 2017; pp. 153–173. [CrossRef]
    Paper not yet in RePEc: Add citation now
  28. Fang, M.; Yang, S.; Lei, Y. Residual contagion in emerging markets: ‘herd’ and ‘alarm’ effects in informatization. Electron. Commer. Res. 2021, 21, 787–807. [CrossRef]
    Paper not yet in RePEc: Add citation now
  29. Fares, O.; Butt, I.; Lee, S.H.M. Utilization of Artificial Intelligence in the banking sector: A systematic literature review. J. Financial Serv. Mark. 2022. [CrossRef]
    Paper not yet in RePEc: Add citation now
  30. Federal Reserve History. Asian Financial Crisis. Available online: https://www.federalreservehistory.org/essays/asian-financialcrisis (accessed on 14 February 2023).
    Paper not yet in RePEc: Add citation now
  31. Gai, P.; Kapadia, S. Contagion in financial networks. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 2401–2423. [CrossRef]

  32. Gajurel, D.; Dungey, M. Systematic Contagion Effects of the Global Finance Crisis: Evidence from the World’s Largest Advanced and Emerging Equity Markets. J. Risk Financ. Manag. 2023, 16, 182. [CrossRef]

  33. Goldstein, I. Chapter 36—Empirical Literature on Financial Crises: Fundamentals vs. Panic. In The Evidence and Impact of Financial Globalization; Elsevier: Amsterdam, The Netherlands, 2013; pp. 523–534.
    Paper not yet in RePEc: Add citation now
  34. Haghighi, S.; Jasemi, M.; Hessabi, S.; Zolanvari, A. PyCM: Multiclass confusion matrix library in Python. J. Open Source Softw. 2018, 3, 729. [CrossRef]
    Paper not yet in RePEc: Add citation now
  35. Halaj, G. Agent-Based Model of System-Wide Implications of Funding Risk; Working Paper Series, No. 2121; European Central Bank: Frankfurt, Germany, 2018.

  36. Herrmann, H.; Masawi, B. Three and a half decades of artificial intelligence in banking, financial services, and insurance: A systematic evolutionary review. Strat. Chang. 2022, 31, 549–569. [CrossRef]
    Paper not yet in RePEc: Add citation now
  37. Hoppit, J. The myths of the South Sea Bubble. Trans. R. Hist. Soc. 2002, 12, 141–165. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. Hsing, Y. The Stock Market and Macroeconomic Variables in BRICS Country and Policy Implications. Int. J. Econ. Financ. Issues 2011, 1, 12–18.

  39. IBM. K-Nearest Neighbors Algorithm. Available online: https://www.ibm.com/topics/knn (accessed on 15 February 2023).
    Paper not yet in RePEc: Add citation now
  40. Ibrahem Ahmed Osman, A.; Najah, A.A.; Chow, M.; Feng, H.Y.; El-Shafie, A. Extreme gradient boosting (Xgboost) model to predict thegroundwater levels in Selangor Malaysia. Ain Shams Eng. J. 2021, 12, 1545–1556. [CrossRef]
    Paper not yet in RePEc: Add citation now
  41. ING Bank. Press Release Regarding the Use of Artificial Intelligence by Cyber Attackers. Available online: https://ing.ro/ informatii-utile/ING-Bank-si-DNSC-fac-apel-la-vigilenta (accessed on 10 February 2023).
    Paper not yet in RePEc: Add citation now
  42. Ionescu, S.; Nica, I.; Chirita, N. Cybernetics Approach Using Agent-Based Modeling in the Process of Evacuating Educational Institutions in Case of Disasters. Sustainability 2021, 13, 10277. [CrossRef]
    Paper not yet in RePEc: Add citation now
  43. ITUTrends. Assessing the Economic Impact of Artificial Intelligence. Available online: https://www.itu.int/dms_pub/itu-s/ opb/gen/S-GEN-ISSUEPAPER-2018-1-PDF-E.pdf (accessed on 10 February 2023).
    Paper not yet in RePEc: Add citation now
  44. Khan, F. Application of Agent-Based Modeling: Simulating Financial Systemic Risk and Contagion within Housing and Financial Markets. Ph.D. Dissertation, The Claremont Graduate University, Claremont, CA, USA, 2019; p. 332. Available online: https://scholarship.claremont.edu/cgu_etd/332 (accessed on 9 July 2023).
    Paper not yet in RePEc: Add citation now
  45. Khumalo, J. Inflation and Stock Prices interactions in South Africa: VAR Analysis. Int. J. Econ. Financ. Stud. 2013, 5, 23–24.
    Paper not yet in RePEc: Add citation now
  46. Li, H.; Zou, H. Inflation, Growth, and Income Distribution: A Cross-Country Study. Ann. Econ. Financ. 2002, 3, 85–101.

  47. Lian, Y.; Gao, J.; Ye, T. How does green credit affect the financial performance of commercial banks?—Evidence from China. J. Clean. Prod. 2022, 344, 131069. [CrossRef]
    Paper not yet in RePEc: Add citation now
  48. Liew, B.; Kovacs, F.; Rugamer, D.; Royuela, A. Machine learning versus logistic regression for prognostic modelling in individuals with non-specific neck pain. Eur. Spine J. 2022, 31, 2082–2091. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  49. Mahalakshmi, V.; Kulkarni, N.; Kumar, K.V.P.; Kumar, K.S.; Sree, D.N.; Durga, S. The role of implementing Artificial Intelligence and Machine Learning Technologies in the financial services Industry for creating Competitive Intelligence. Mater. Proc. 2022, 56 Pt 4, 2252–2255. [CrossRef]
    Paper not yet in RePEc: Add citation now
  50. Merriam-Webster. Available online: https://www.merriamwebster.com/dictionary/contagion (accessed on 10 February 2023).
    Paper not yet in RePEc: Add citation now
  51. Miller, J.H.; Scott, E.P. Complex Adaptive Systems: An Introduction to Computational Models of Social Life; Princeton University Press: Princeton, NJ, USA, 2007.

  52. Milne, R.J.; Delcea, C.; Cotfas, L.-A. Airplane Boarding Methods That Reduce Risk from COVID-19. Saf. Sci. 2021, 134, 105061. [CrossRef]
    Paper not yet in RePEc: Add citation now
  53. Milne, R.J.; Delcea, C.; Cotfas, L.-A.; Craciun, L.; Molanescu, A.G. Health Risks of Airplane Boarding Methods with Apron Buses When Some Passengers Disregard Safe Social Distancing. PLoS ONE 2022, 17, e0271544. [CrossRef]
    Paper not yet in RePEc: Add citation now
  54. Milne, R.J.; Delcea, C.; Cotfas, L.-A.; Ioanas, C. Evaluation of Boarding Methods Adapted for Social Distancing When Using Apron Buses. IEEE Access 2020, 8, 151650–151667. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  55. Naeem, M.A.; Karim, S.; Yarovaya, L.; Lucey, B.M. Systemic risk contagion of green and Islamic markets with conventional markets. Ann. Oper. Res. 2023. [CrossRef]
    Paper not yet in RePEc: Add citation now
  56. National Bank of Romania. Evolution of the Quarterly Reference Index—IRCC. Available online: https://www.bnr.ro/Indicelede -referin%C8%9Ba-pentru-creditele-consumatorilor{-}{-}19492-Mobile.aspx (accessed on 16 February 2023).
    Paper not yet in RePEc: Add citation now
  57. National Bank of Romania. Financial Stability Report. Available online: https://www.bnr.ro/PublicationDocuments.aspx?icid= 19968 (accessed on 14 February 2023).
    Paper not yet in RePEc: Add citation now
  58. National Bank of Romania. Financial Stability Report. Available online: https://www.bnr.ro/Raportul-asupra-stabilita%c8%9biifinanciare {-}{-}-decembrie-2022-25453.aspx (accessed on 14 February 2023).
    Paper not yet in RePEc: Add citation now
  59. National Bank of Romania. Financial Stability Report. Available online: https://www.bnr.ro/Regular-publications-2504.aspx (accessed on 10 February 2023).
    Paper not yet in RePEc: Add citation now
  60. National Bank of Romania. The Role of the NBR in Maintaining Financial Stability. Available online: https://www.bnr.ro/ Stabilitate-financiara{-}{-}-Rolul-BNR-3114-Mobile.aspx (accessed on 14 February 2023).
    Paper not yet in RePEc: Add citation now
  61. National Institute of Statistics. Evolution of the Inflation Rate in Romania. Available online: https://insse.ro/cms/en/content/ cpi-%E2%80%93-quarterly-data-series (accessed on 16 February 2023).
    Paper not yet in RePEc: Add citation now
  62. Nazareth, N.; Reddy, Y.V.R. Financial applications of machine learning: A literature review. Expert Syst. Appl. 2023, 219, 119640. [CrossRef]
    Paper not yet in RePEc: Add citation now
  63. Nica, I.; Alexandru, D.B.; Crăciunescu, S.L.P.; Ionescu, S , . Automated Valuation Modelling: Analysing Mortgage Behavioural Life Profile Models Using Machine Learning Techniques. Sustainability 2021, 13, 5162. [CrossRef]

  64. OECD. Artificial Intelligence, Machine Learning and Big Data in Finance. Opportunities, Challenges and Implications for Policy Makers. 2021. Available online: https://www.oecd.org/finance/artificial-intelligence-machine-learningbig-data-in-finance.htm (accessed on 10 February 2023).
    Paper not yet in RePEc: Add citation now
  65. Oxford Dictionary. Available online: https://www.oxfordlearnersdictionaries.com/definition/american_english/contagion (accessed on 10 February 2023).
    Paper not yet in RePEc: Add citation now
  66. Pan, X.; Han, C.S.; Law, K.H. A multi-agent based simulation framework for the study of human and social behavior in egress analysis. In Proceedings of the International Conference on Computing in Civil Engineering, Cancun, Mexico, 12–15 July 2005.
    Paper not yet in RePEc: Add citation now
  67. Ponsiglione, C.; Roma, V.; Zampella, F.; Zollo, G. The Fairness/Efficiency Issue Explored Through El Farol Bar Model. In Scientific Methods for the Treatment of Uncertainty in Social Sciences; Gil-Aluja, J., Terceño-Gómez, A., Ferrer-Comalat, J.C., Merigó-Lindahl, J.M., Linares-Mustarós, S., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2015; Volume 377, pp. 309–327, ISBN 978-3-319-19703-6. Sustainability 2023, 15, 12037 32 of 32
    Paper not yet in RePEc: Add citation now
  68. Probst, P.; Wright, M.; Boulesteix, A.-L. Hyperparameters and Tuning Strategies for Random Forest. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1301. [CrossRef]
    Paper not yet in RePEc: Add citation now
  69. Puneet, M. Machine Learning Applications Using Python; Apress: Berkeley, CA, USA, 2018.
    Paper not yet in RePEc: Add citation now
  70. Railsback, S.; Grimm, V. Agent-Based and Individual-Based Modeling: A Practical Introduction, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2019.
    Paper not yet in RePEc: Add citation now
  71. Rand, W.; Rust, R.T. Agent-based modeling in marketing: Guidelines for rigor. Int. J. Res. Mark. 2011, 28, 181–193. [CrossRef]

  72. Ranjan, P.; Santhosh, K.; Kumar, A.; Kumar, S. Fraud Detection on Bank Payments using Machine Learning. In Proceedings of the 2022 International Conference for Advancement in Technology (ICONAT), Goa, India, 21–22 January 2022. [CrossRef]
    Paper not yet in RePEc: Add citation now
  73. Ris, K.; Stankovic, Z.; Avramovic, Z. Implications of Implementation of Artificial Intelligence in the Banking Business with Correlation to the Human Factor. J. Comput. Commun. 2020, 08, 130–144. [CrossRef]
    Paper not yet in RePEc: Add citation now
  74. Sadok, H.; Sakka, F.; El Maknouzi, M. Artificial intelligence and bank credit analysis. A review. Cogent Econ. Finance 2022, 10, 2023262. [CrossRef] Sustainability 2023, 15, 12037 30 of 32

  75. Sargent, H. Algorithmic decision-making in financial services: Economic and normative outcomes in consumer credit. AI Ethics 2022. [CrossRef]
    Paper not yet in RePEc: Add citation now
  76. Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [CrossRef]
    Paper not yet in RePEc: Add citation now
  77. Scarlat, E.; Chirita, N. Cibernetica Sistemelor Economice—Editia a Treia; Editura Economică: Bucharest, Romania, 2019.
    Paper not yet in RePEc: Add citation now
  78. Silva, T.C.; da Silva, M.A.; Tabak, B.M. Systemic risk in financial systems: A feedback approach. J. Econ. Behav. Organ. 2017, 144, 97–120. [CrossRef]

  79. Simudyne. A Complete Guide to Agent-Based Modeling for Financial Services. Available online: https://simudyne.com/wpcontent /uploads/2019/08/A4-Guide-to-ABM-FINAL-5.pdf (accessed on 16 February 2023).
    Paper not yet in RePEc: Add citation now
  80. Sokpo, J.T.; Iorember, P.T.; Usar, T. Inflation and Stock Market returns volatility: Evidence form the Nigerian Stock Exchange 1995Q1–2016Q4: An E-GARCH Approach. MPRA Paper, no. 85656. Int. J. Econ. Financ. Manag. 2017, 2, 69–76.
    Paper not yet in RePEc: Add citation now
  81. Steinbacher, M.; Raddant, M.; Karimi, F.; Cuena, E.C.; Alfarano, S.; Iori, G.; Lux, T. Advances in the agent-based modeling of economic and social behavior. SN Bus. Econ. 2021, 1, 99. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  82. T , ilică, E.V. Financial Contagion Patterns in Individual Economic Sectors. The Day-of-the-Week Effect from the Polish, Russian and Romanian Markets. J. Risk Financ. Manag. 2021, 14, 442. [CrossRef]

  83. Tchereni, B.H.; Mpini, S. Monetary Policy Shocks and Stock Market volatility in emerging markets. Risk Gov. Control. Financ. Mark. Inst. 2020, 10, 50–61. [CrossRef]
    Paper not yet in RePEc: Add citation now
  84. Thakor, A. The Financial Crisis of 2007–2009: Why did it happen and what did we learn? Rev. Corp. Financ. Stud. Rev. Corp. Finance Stud. 2015, 4, 155–205. [CrossRef]
    Paper not yet in RePEc: Add citation now
  85. Towards AI. Logistic Regression with Mathematics. Available online: https://towardsai.net/p/machine-learning/logisticregression -with-mathematics (accessed on 15 February 2023).
    Paper not yet in RePEc: Add citation now
  86. Towardsdatascience. Random Forest in Phyton. Available online: https://towardsdatascience.com/random-forest-in-python-24 d0893d51c0 (accessed on 14 February 2023).
    Paper not yet in RePEc: Add citation now
  87. Trenca, I.; Dezsi, E. Financial contagion on the Romanian stock market. In Finante—Provocarile Viitorului (Finance—Challenges of the Future); University of Craiova, Faculty of Economics and Business Administration: Craiova, Romania, 2012; Volume 1, pp. 27–36.

  88. Tsagkanos, A.; Sharma, A.; Ghosh, B. Green Bonds and Commodities: A New Asymmetric Sustainable Relationship. Sustainability 2022, 14, 6852. [CrossRef]

  89. Umlauft, M.; Schranz, M.; Elmenreich, W. SwarmFabSim: A Simulation Framework for Bottom-up Optimization in Flexible JobShop Scheduling Using NetLogo. In Proceedings of the 12th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, Lisbon, Portugal, 14–16 July 2022; SCITEPRESS—Science and Technology Publications: Lisbon, Portugal, 2022; pp. 271–279.
    Paper not yet in RePEc: Add citation now
  90. Wamba-Taguimdje, S.L.; Wamba, S.F.; Kamdjoug, J.R.K.; Wanko, C.E.T. Influence of Artificial Intelligence (AI) on Firm Performance: The Business Value of AI-based Transformation Projects. Bus. Process. Manag. J. 2020, 26, 1893–1924. [CrossRef]
    Paper not yet in RePEc: Add citation now
  91. Wang, Y.; Zhang, Y.; Lu, Y.; Yu, X. A comparative assessment of Credit Risk Model Based on Machine Learning—A case study of bank loan data. Procedia Comput. Sci. 2020, 174, 141–149. [CrossRef]
    Paper not yet in RePEc: Add citation now
  92. Wilensky, U.; Rand, W. An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo; MIT Press: Cambridge, MA, USA, 2015, ISBN 978-0-262-73189-8.
    Paper not yet in RePEc: Add citation now
  93. Yigitcanlar, T.; Degirmenci, K.; Inkinen, T. Drivers behind the public perception of artificial intelligence: Insights from major Australian cities. AI Soc. 2022. [CrossRef]
    Paper not yet in RePEc: Add citation now
  94. Yu, Y.; Nguyen, T.; Li, J.; Sanchez, L.; Nguyen, A. Predicting elastic modulus degradation of alkali silica reaction affected concrete using soft computing techniques: A comparative study. Constr. Build. Mater. 2020, 274, 122024. [CrossRef] Sustainability 2023, 15, 12037 31 of 32
    Paper not yet in RePEc: Add citation now
  95. Zhang, B.; Xie, X.; Li, C. How Connected Is China’s Systemic Financial Risk Contagion Network?—A Dynamic Network Perspective Analysis. Mathematics 2023, 11, 2267. [CrossRef]

  96. Zheng, C. An innovative MS-VAR model with integrated financial knowledge for measuring the impact of stock market bubbles in financial security. J. Innov. Knowl. 2022, 7, 100207. [CrossRef]
    Paper not yet in RePEc: Add citation now
  97. Zhou, Y.; Shen, X.; Cao, J.; Zhang, Y. Research on Influence Factors of Prevention and Control Measures on Economy-Based on Netlogo Simulation and Big Data Computation. In Proceedings of the 2022 2nd International Conference on Social Sciences and Intelligence Management (SSIM), Taichung, Taiwan, 24–26 November 2022; IEEE: Taichung, Taiwan, 2022; pp. 79–84.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis. (2024). Thasneem, J ; Thomas, Ann Susan ; Vijayappan, Ajitha Kumari.
    In: Quality & Quantity: International Journal of Methodology.
    RePEc:spr:qualqt:v:58:y:2024:i:1:d:10.1007_s11135-023-01673-0.

    Full description at Econpapers || Download paper

  2. Predicting abnormal trading behavior from internet rumor propagation: a machine learning approach. (2023). Lu, Wei-Ting ; Cheng, Li-Chen ; Yeo, Benjamin.
    In: Financial Innovation.
    RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-022-00423-9.

    Full description at Econpapers || Download paper

  3. An Analysis of Residual Financial Contagion in Romania’s Banking Market for Mortgage Loans. (2023). Ionescu, Tefan ; Chiri, Nora ; Nica, Ionu ; Delcea, Camelia.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:15:p:12037-:d:1211596.

    Full description at Econpapers || Download paper

  4. Explaining Deep Learning Models for Credit Scoring with SHAP: A Case Study Using Open Banking Data. (2023). de Lange, Petter Eilif ; Hjelkrem, Lars Ole.
    In: JRFM.
    RePEc:gam:jjrfmx:v:16:y:2023:i:4:p:221-:d:1114264.

    Full description at Econpapers || Download paper

  5. A Systematic Study on Reinforcement Learning Based Applications. (2023). Vairavasundaram, Subramaniyaswamy ; Nikolovski, Srete ; Sivamayil, Keerthana ; Rajasekar, Elakkiya ; Aljafari, Belqasem.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:3:p:1512-:d:1056596.

    Full description at Econpapers || Download paper

  6. The impact of Artficial Intelligence and how it is shaping banking. (2022). Theuri, Joseph ; Olukuru, John.
    In: KBA Centre for Research on Financial Markets and Policy Working Paper Series.
    RePEc:zbw:kbawps:61.

    Full description at Econpapers || Download paper

  7. A comparative study of corporate credit ratings prediction with machine learning. (2022). Buyukkor, Yasin ; Doan, Seyyide ; Atan, Murat.
    In: Operations Research and Decisions.
    RePEc:wut:journl:v:32:y:2022:i:1:p:25-47:id:2643.

    Full description at Econpapers || Download paper

  8. Credit Scoring with Drift Adaptation Using Local Regions of Competence. (2022). Doumpos, Michalis ; Nikolaidis, Dimitrios.
    In: SN Operations Research Forum.
    RePEc:spr:snopef:v:3:y:2022:i:4:d:10.1007_s43069-022-00177-1.

    Full description at Econpapers || Download paper

  9. Dangerous liasons and hot customers for banks. (2022). Cerqueti, Roy ; Pampurini, Francesca ; Quaranta, Anna Grazia ; Pezzola, Annagiulia.
    In: Review of Quantitative Finance and Accounting.
    RePEc:kap:rqfnac:v:59:y:2022:i:1:d:10.1007_s11156-022-01039-x.

    Full description at Econpapers || Download paper

  10. Exploitation of Machine Learning Algorithms for Detecting Financial Crimes Based on Customers’ Behavior. (2022). Ahmad, Tauseef ; Kumar, Sanjay ; Bharany, Salil ; Ahmed, Rafeeq ; Shafiq, Muhammad ; Shuaib, Mohammed ; Eldin, Elsayed Tag ; Ur, Ateeq.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:21:p:13875-:d:953058.

    Full description at Econpapers || Download paper

  11. The Value of Open Banking Data for Application Credit Scoring: Case Study of a Norwegian Bank. (2022). de Lange, Petter Eilif ; Hjelkrem, Lars Ole ; Nesset, Erik.
    In: JRFM.
    RePEc:gam:jjrfmx:v:15:y:2022:i:12:p:597-:d:1000763.

    Full description at Econpapers || Download paper

  12. Deep Learning vs. Gradient Boosting: Benchmarking state-of-the-art machine learning algorithms for credit scoring. (2022). Schmitt, Marc.
    In: Papers.
    RePEc:arx:papers:2205.10535.

    Full description at Econpapers || Download paper

  13. Deep Learning in Business Analytics: A Clash of Expectations and Reality. (2022). Schmitt, Marc Andreas.
    In: Papers.
    RePEc:arx:papers:2205.09337.

    Full description at Econpapers || Download paper

  14. To supervise or to self-supervise: a machine learning based comparison on credit supervision. (2021). Pereira, Jose Americo.
    In: Financial Innovation.
    RePEc:spr:fininn:v:7:y:2021:i:1:d:10.1186_s40854-021-00242-4.

    Full description at Econpapers || Download paper

  15. Accuracies of some Learning or Scoring Models for Credit Risk Measurement. (2021). SADEFO KAMDEM, Jules ; Osei, Salomey ; Fadugba, Jeremiah ; Mpinda, Berthine Nyunga.
    In: Working Papers.
    RePEc:hal:wpaper:hal-03194081.

    Full description at Econpapers || Download paper

  16. Automated Valuation Modelling: Analysing Mortgage Behavioural Life Profile Models Using Machine Learning Techniques. (2021). Ionescu, Tefan ; Paramon, Simona Liliana ; Nica, Ionu ; Alexandru, Daniela Blan.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:9:p:5162-:d:549169.

    Full description at Econpapers || Download paper

  17. Mechanism Underlying the Formation of Virtual Agglomeration of Creative Industries: Theoretical Analysis and Empirical Research. (2021). Jiang, Yao ; Chen, XU ; Liu, Chunhong ; Gao, Changchun.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:4:p:1637-:d:492716.

    Full description at Econpapers || Download paper

  18. A New Model Averaging Approach in Predicting Credit Risk Default. (2021). Cucculelli, Marco ; Jha, Paritosh Navinchandra.
    In: Risks.
    RePEc:gam:jrisks:v:9:y:2021:i:6:p:114-:d:570809.

    Full description at Econpapers || Download paper

  19. A Machine Learning Approach for Micro-Credit Scoring. (2021). Nde, Titus Nyarko ; Date, Paresh ; Constantinescu, Corina ; Ampountolas, Apostolos.
    In: Risks.
    RePEc:gam:jrisks:v:9:y:2021:i:3:p:50-:d:513405.

    Full description at Econpapers || Download paper

  20. Deep learning for credit scoring: Do or don’t?. (2021). Lemahieu, Wilfried ; Broucke, Seppe Vanden ; Oskarsdottir, Maria ; Gunnarsson, Bjorn Rafn ; Baesens, Bart.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:295:y:2021:i:1:p:292-305.

    Full description at Econpapers || Download paper

  21. Predicting mortgage early delinquency with machine learning methods. (2021). Guo, Zhengfeng ; Zhao, Xinlei ; Chen, Shunqin.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:290:y:2021:i:1:p:358-372.

    Full description at Econpapers || Download paper

  22. Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management. (2021). Redzepagic, Srdjan ; Milojevi, Nenad.
    In: Journal of Central Banking Theory and Practice.
    RePEc:cbk:journl:v:10:y:2021:i:3:p:41-57.

    Full description at Econpapers || Download paper

  23. Predicting Credit Risk for Unsecured Lending: A Machine Learning Approach. (2021). Naik, K S.
    In: Papers.
    RePEc:arx:papers:2110.02206.

    Full description at Econpapers || Download paper

  24. A Sparsity Algorithm with Applications to Corporate Credit Rating. (2021). Chen, Zhi ; Florescu, Ionut ; Wang, Dan.
    In: Papers.
    RePEc:arx:papers:2107.10306.

    Full description at Econpapers || Download paper

  25. Transparency of credit institutions. (2020). Bulyga, Roman P ; Kashirskaya, Liudmila V ; Safonova, Irina V ; Sitnov, Alexey A.
    In: Entrepreneurship and Sustainability Issues.
    RePEc:ssi:jouesi:v:7:y:2020:i:4:p:3158-3172.

    Full description at Econpapers || Download paper

  26. Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE. (2020). Smiti, Salima ; Soui, Makram.
    In: Information Systems Frontiers.
    RePEc:spr:infosf:v:22:y:2020:i:5:d:10.1007_s10796-020-10031-6.

    Full description at Econpapers || Download paper

  27. Deep Learning and Implementations in Banking. (2020). Huang, XU ; Ghodsi, Mansi ; Hassani, Hossein ; Silva, Emmanuel.
    In: Annals of Data Science.
    RePEc:spr:aodasc:v:7:y:2020:i:3:d:10.1007_s40745-020-00300-1.

    Full description at Econpapers || Download paper

  28. Comparison study of two-step LGD estimation model with probability machines. (2020). Tanoue, Yuta ; Yamashita, Satoshi ; Nagahata, Hideaki.
    In: Risk Management.
    RePEc:pal:risman:v:22:y:2020:i:3:d:10.1057_s41283-020-00059-y.

    Full description at Econpapers || Download paper

  29. Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics. (2020). Faghan, Yaser ; Ardabili, Sina Faizollahzadeh ; Band, Shahab S ; Duan, Puhong ; Ghamisi, Pedram ; Salwana, Ely ; Mosavi, Amirhosein.
    In: Mathematics.
    RePEc:gam:jmathe:v:8:y:2020:i:10:p:1640-:d:417900.

    Full description at Econpapers || Download paper

  30. Bayesian regularized artificial neural networks for the estimation of the probability of default. (2020). Germano, Guido ; Sariev, Eduard.
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:101029.

    Full description at Econpapers || Download paper

  31. Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting. (2020). Yang, Y ; Ma, T ; Sung, M.-C., ; Lessmann, S ; Johnson, J. E. V., ; Kim, A.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:283:y:2020:i:1:p:217-234.

    Full description at Econpapers || Download paper

  32. A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees. (2020). Chatterjee, Rupak ; Golbayani, Parisa ; Florescu, Ionu.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:54:y:2020:i:c:s1062940820301480.

    Full description at Econpapers || Download paper

  33. Sequential Deep Learning for Credit Risk Monitoring with Tabular Financial Data. (2020). Yousefi, Nooshin ; Clements, Jillian M ; Efimov, Dmitry ; Xu, DI.
    In: Papers.
    RePEc:arx:papers:2012.15330.

    Full description at Econpapers || Download paper

  34. Machine Learning approach for Credit Scoring. (2020). Massaron, L ; Giada, L ; le Pera, G ; Trifiro, D ; Nordio, C ; Provenzano, A R ; Riciputi, A ; Datteo, A ; Jean, N ; Spadaccino, M.
    In: Papers.
    RePEc:arx:papers:2008.01687.

    Full description at Econpapers || Download paper

  35. A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees. (2020). Chatterjee, Rupak ; Golbayani, Parisa ; Florescu, Ionuct.
    In: Papers.
    RePEc:arx:papers:2007.06617.

    Full description at Econpapers || Download paper

  36. Intelligent Credit Limit Management in Consumer Loans Based on Causal Inference. (2020). Wang, Zhun ; Fang, Yanming ; Yu, Quan ; Jia, Quanhui ; Jiang, Linbo ; Zhao, Kui ; Miao, Hang.
    In: Papers.
    RePEc:arx:papers:2007.05188.

    Full description at Econpapers || Download paper

  37. Determining Secondary Attributes for Credit Evaluation in P2P Lending. (2020). Bhuvaneswari, Revathi ; Segalini, Antonio.
    In: Papers.
    RePEc:arx:papers:2006.13921.

    Full description at Econpapers || Download paper

  38. Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting. (2019). Johnson, J. E. V., ; Kolesnikova, A ; Yang, Y ; Ma, T ; Sung, M.-C., ; Lessmann, S.
    In: IRTG 1792 Discussion Papers.
    RePEc:zbw:irtgdp:2019023.

    Full description at Econpapers || Download paper

  39. Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default. (2019). Lee, Michael ; Teng, Huei-Wen.
    In: Review of Pacific Basin Financial Markets and Policies (RPBFMP).
    RePEc:wsi:rpbfmp:v:22:y:2019:i:03:n:s0219091519500218.

    Full description at Econpapers || Download paper

  40. Artificial Intelligence, Data, Ethics. An Holistic Approach for Risks and Regulation. (2019). Guegan, Dominique ; Bogroff, Alexis.
    In: Working Papers.
    RePEc:ven:wpaper:2019:19.

    Full description at Econpapers || Download paper

  41. A chemical-reaction-optimization-based neuro-fuzzy hybrid network for stock closing price prediction. (2019). Nayak, Sarat Chandra ; Misra, Bijan Bihari.
    In: Financial Innovation.
    RePEc:spr:fininn:v:5:y:2019:i:1:d:10.1186_s40854-019-0153-1.

    Full description at Econpapers || Download paper

  42. Artificial Intelligence, Data, Ethics: An Holistic Approach for Risks and Regulation. (2019). Guegan, Dominique ; Bogroff, Alexis.
    In: Post-Print.
    RePEc:hal:journl:halshs-02181597.

    Full description at Econpapers || Download paper

  43. Artificial Intelligence, Data, Ethics: An Holistic Approach for Risks and Regulation. (2019). Bogroff, Alexis ; Guegan, Dominique.
    In: Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers).
    RePEc:hal:cesptp:halshs-02181597.

    Full description at Econpapers || Download paper

  44. Risk Measurement. (2019). Hassani, Bertrand K ; Guegan, Dominique.
    In: Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers).
    RePEc:hal:cesptp:halshs-02119256.

    Full description at Econpapers || Download paper

  45. Machine Learning in Banking Risk Management: A Literature Review. (2019). Sharma, Suneel ; Leo, Martin ; Maddulety, K.
    In: Risks.
    RePEc:gam:jrisks:v:7:y:2019:i:1:p:29-:d:211265.

    Full description at Econpapers || Download paper

  46. A robust machine learning approach for credit risk analysis of large loan-level datasets using deep learning and extreme gradient boosting. (2019). Siakoulis, Vasilis ; Stavroulakis, Evaggelos ; Klamargias, Aristotelis ; Petropoulos, Anastasios.
    In: IFC Bulletins chapters.
    RePEc:bis:bisifc:50-22.

    Full description at Econpapers || Download paper

  47. A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting. (2019). Siakoulis, Vasilis ; Stavroulakis, Evaggelos ; Klamargias, Aristotelis ; Petropoulos, Anastasios.
    In: IFC Bulletins chapters.
    RePEc:bis:bisifc:49-49.

    Full description at Econpapers || Download paper

  48. The use of big data analytics and artificial intelligence in central banking. (2019). Committee, Irving Fisher.
    In: IFC Bulletins.
    RePEc:bis:bisifb:50.

    Full description at Econpapers || Download paper

  49. Insolvency prediction for Portuguese agro-industrial SME: Tree Bagging Methodology. (2019). Canto, Jose Augusto ; Leite, Gabriela ; Machado-Santos, Carlos ; Ferreira, Amelia Cristina.
    In: Agricultural Economics Review.
    RePEc:ags:aergaa:330639.

    Full description at Econpapers || Download paper

  50. The Interaction of Borrower and Loan Characteristics in Predicting Risks of Subprime Automobile Loans. (2018). Ghulam, Yaseen ; Hill, Sophie ; Naseem, Sana ; Dhruva, Kamini.
    In: Risks.
    RePEc:gam:jrisks:v:6:y:2018:i:3:p:101-:d:169957.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-03 21:32:21 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.