- Alhijawi, B.; Awajan, A. Genetic algorithms: Theory, genetic operators, solutions, and applications. Evol. Intell. 2024, 17, 1245–1256. [CrossRef]
Paper not yet in RePEc: Add citation now
- Bajpai, P. The Top Five Nations Leading in Solar Energy Generation. Technical Report. 2021. Available online: https://www. nasdaq.com/articles/the-top-five-nations-leading-in-solar-energy-generation-2021-08-17 (accessed on 8 March 2024).
Paper not yet in RePEc: Add citation now
- Bouaouda, A.; Afdel, K.; Abounacer, R. Forecasting the Energy Consumption of Cloud Data Centers Based on Container Placement with Ant Colony Optimization and Bin Packing. In Proceedings of the 2022 5th Conference on Cloud and Internet of Things (CIoT), Marrakech, Morocco, 28–30 March 2022; pp. 150–157. [CrossRef]
Paper not yet in RePEc: Add citation now
- Bouaouda, A.; Afdel, K.; Abounacer, R. Meta-heuristic and Heuristic Algorithms for Forecasting Workload Place- ment and Energy Consumption in Cloud Data Centers. Adv. Sci. Technol. Eng. Syst. J. 2023, 8, 1–11. [CrossRef]
Paper not yet in RePEc: Add citation now
- Chen, J.; Zeng, G.Q.; Zhou, W.; Du, W.; Lu, K.D. Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization. Energy Convers. Manag. 2018, 165, 681–695. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dayarathna, M.; Wen, Y.; Fan, R. Data Center Energy Consumption Modeling: A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 732–794. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dubey, K.; Sharma, S.C.; Nasr, A.A. A Simulated Annealing based Energy-Efficient VM Placement Policy in Cloud Computing. In Proceedings of the 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 24–25 February 2020; pp. 1–5. [CrossRef] Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Dziurzanski, P.; Zhao, S.; Przewozniczek, M.; Komarnicki, M.; Indrusiak, L.S. Scalable distributed evolutionary algorithm orchestration using Docker containers. J. Comput. Sci. 2020, 40, 101069. [CrossRef]
Paper not yet in RePEc: Add citation now
- Güney, T. Solar energy, governance and CO2 emissions. Renew. Energy 2022, 184, 791–798. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hardikar, S.; Ahirwar, P.; Rajan, S. Containerization: Cloud Computing based Inspiration Technology for Adoption through Docker and Kubernetes. In Proceedings of the 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 4–6 August 2021; pp. 1996–2003. [CrossRef]
Paper not yet in RePEc: Add citation now
Huang, P.; Copertaro, B.; Zhang, X.; Shen, J.; Löfgren, I.; Rönnelid, M.; Fahlen, J.; Andersson, D.; Svanfeldt, M. A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating. Appl. Energy 2020, 258, 114109. [CrossRef]
- Katal, A.; Dahiya, S.; Choudhury, T. Energy efficiency in cloud computing data centers: A survey on software technologies. Clust. Comput. 2023, 26, 1845–1875. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
Koot, M.; Wijnhoven, F. Usage impact on data center electricity needs: A system dynamic forecasting model. Appl. Energy 2021, 291, 116798. [CrossRef]
- Kut, P.; Pietrucha-Urbanik, K. Bibliometric Analysis of Renewable Energy Research on the Example of the Two European Countries: Insights, Challenges, and Future Prospects. Energies 2023, 17, 176. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lee, W.; Kim, K.; Park, J.; Kim, J.; Kim, Y. Forecasting Solar Power Using Long-Short Term Memory and Convolutional Neural Networks. IEEE Access 2018, 6, 73068–73080. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, G.; Xie, S.; Wang, B.; Xin, J.; Li, Y.; Du, S. Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach. IEEE Access 2020, 8, 175871–175880. [CrossRef] Sustainability 2024, 16, 4438 28 of 28
Paper not yet in RePEc: Add citation now
- Li, S.; Li, W.; Cook, C.; Zhu, C.; Gao, Y. Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5457–5466. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, Y.; Wen, Y.; Tao, D.; Guan, K. Transforming Cooling Optimization for Green Data Center via Deep Reinforcement Learning. IEEE Trans. Cybern. 2020, 50, 2002–2013. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, X.F.; Zhan, Z.H.; Deng, J.D.; Li, Y.; Gu, T.; Zhang, J. An Energy Efficient Ant Colony System for Virtual Machine Placement in Cloud Computing. IEEE Trans. Evol. Comput. 2018, 22, 113–128. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, Y.; Lan, D.; Pang, Z.; Karlsson, M.; Gong, S. Performance Evaluation of Containerization in Edge-Cloud Computing Stacks for Industrial Applications: A Client Perspective. IEEE Open J. Ind. Electron. Soc. 2021, 2, 153–168. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mahil, M.; Jayasree, T. Combined particle swarm optimization and Ant Colony System for energy efficient cloud data centers. Concurr. Comput. Pract. Exp. 2021, 33, e6195. [CrossRef]
Paper not yet in RePEc: Add citation now
- Matsuo, Y.; LeCun, Y.; Sahani, M.; Precup, D.; Silver, D.; Sugiyama, M.; Uchibe, E.; Morimoto, J. Deep learning, reinforcement learning, and world models. Neural Netw. 2022, 152, 267–275. [CrossRef]
Paper not yet in RePEc: Add citation now
- Pahl, C.; Brogi, A.; Soldani, J.; Jamshidi, P. Cloud Container Technologies: A State-of-the-Art Review. IEEE Trans. Cloud Comput. 2019, 7, 677–692. [CrossRef]
Paper not yet in RePEc: Add citation now
- Peng, X.; Bhattacharya, T.; Cao, T.; Mao, J.; Tekreeti, T.; Qin, X. Exploiting renewable energy and UPS systems to reduce power consumption in data centers. Big Data Res. 2022, 27, 100306. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shaikh, M.R.; Shaikh, S.; Waghmare, S.; Labade, S.; Tekale, A. A Review Paper on Electricity Generation from Solar Energy. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 887, 1884–1889. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shao, X.; Zhang, Z.; Song, P.; Feng, Y.; Wang, X. A review of energy efficiency evaluation metrics for data centers. Energy Build. 2022, 271, 112308. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shen, Z.; Zhou, Q.; Zhang, X.; Xia, B.; Liu, Z.; Li, Y. Data characteristics aware prediction model for power consumption of data center servers. Concurr. Comput. Pract. Exp. 2022, 34, e6902. [CrossRef]
Paper not yet in RePEc: Add citation now
- Smimite, O.; Afdel, K. Hybrid Solution for Container Placement and Load Balancing based on ACO and Bin Packing. Int. J. Adv. Comput. Sci. Appl. 2020, 11. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sun, Y.; Venugopal, V.; Brandt, A. Convolutional Neural Network for Short-Term Solar Panel Output Prediction; IEEE: Piscataway, NJ, USA, 2018; pp. 2357–2361. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sun, Y.; Venugopal, V.; Brandt, A.R. Short-term solar power forecast with deep learning: Exploring optimal input and output configuration. Sol. Energy 2019, 188, 730–741. [CrossRef]
Paper not yet in RePEc: Add citation now
- Suresh, V.; Janik, P.; Rezmer, J.; Leonowicz, Z. Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm. Energies 2020, 13, 723. [CrossRef]
Paper not yet in RePEc: Add citation now
- Tang, N.; Mao, S.; Wang, Y.; Nelms, R.M. Solar Power Generation Forecasting With a LASSO-Based Approach. IEEE Internet Things J. 2018, 5, 1090–1099. [CrossRef]
Paper not yet in RePEc: Add citation now
- Victoria, M.; Haegel, N.; Peters, I.M.; Sinton, R.; Jäger-Waldau, A.; del Cañizo, C.; Breyer, C.; Stocks, M.; Blakers, A.; Kaizuka, I.; et al. Solar photovoltaics is ready to power a sustainable future. Joule 2021, 5, 1041–1056. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, H.n.; Liu, N.; Zhang, Y.y.; Feng, D.w.; Huang, F.; Li, D.s.; Zhang, Y.m. Deep reinforcement learning: A survey. Front. Inf. Technol. Electron. Eng. 2020, 21, 1726–1744. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, X.; Wang, S.; Liang, X.; Zhao, D.; Huang, J.; Xu, X.; Dai, B.; Miao, Q. Deep reinforcement learning: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 5064–5078. [CrossRef]
Paper not yet in RePEc: Add citation now
Wu, W.; Ma, X.; Zeng, B.; Zhang, Y.; Li, W. Forecasting short-term solar energy generation in Asia Pacific using a nonlinear grey Bernoulli model with time power term. Energy Environ. 2021, 32, 759–783. [CrossRef]
- Yagli, G.M.; Yang, D.; Srinivasan, D.; Monika. Solar Forecast Reconciliation and Effects of Improved Base Forecasts. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 2719–2723. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhou, H.; Liu, Q.; Yan, K.; Du, Y.; Zhang, X. Deep Learning Enhanced Solar Energy Forecasting with AI-Driven IoT. Wirel. Commun. Mob. Comput. 2021, 2021, 9249387. [CrossRef]
Paper not yet in RePEc: Add citation now