- About SWEPCO. Available online: www.swepco.com/lib/docs/company/about/SWEPCO_Fact%20Sheet_2024_03112024.pdf (accessed on 22 May 2024).
Paper not yet in RePEc: Add citation now
- Akbarnezhad, A.; Xiao, J. Estimation and minimization of embodied carbon of buildings: A review. Buildings 2017, 7, 5. [CrossRef]
Paper not yet in RePEc: Add citation now
- Anand, C.K.; Bisaillon, V.; Webster, A.; Amor, B. Integration of sustainable development in higher education—A regional initiative in Quebec (Canada). J. Clean. Prod. 2015, 108, 916–923. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ascione, F.; Bianco, N.; De Masi, R.F.; Vanoli, G.P. Rehabilitation of the building envelope of hospitals: Achievable energy savings and microclimatic control on varying the HVAC systems in Mediterranean climates. Energy Build. 2013, 60, 125–138. [CrossRef]
Paper not yet in RePEc: Add citation now
Averchenkova, A.; Fankhauser, S.; Finnegan, J.J. The impact of strategic climate legislation: Evidence from expert interviews on the UK Climate Change Act. Clim. Policy 2021, 21, 251–263. [CrossRef]
Balaras, C.; Dascalaki, E.; Droutsa, K.; Kontoyiannidis, S. Empirical assessment of calculated and actual heating energy use in Hellenic residential buildings. Appl. Energy 2016, 164, 115–132. [CrossRef]
- Bare, J.; Young, D.; Qam, S.; Hopton, M.; Chief, S. Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI); US Environmental Protection Agency: Washington, DC, USA, 2012.
Paper not yet in RePEc: Add citation now
- Bejo, L. Operational vs. Embodied Energy: A Case for Wood Construction. Drv. Ind. 2017, 68, 163–172. [CrossRef]
Paper not yet in RePEc: Add citation now
- Blengini, G.A.; Di Carlo, T. The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy Build. 2010, 42, 869–880. [CrossRef]
Paper not yet in RePEc: Add citation now
- BS ISO EN 15978: 2011; Sustainability of Construction Works-Assessment of Environmental Performance of Buildings-Calculation Method. British Standards Institution: London, UK, 2011.
Paper not yet in RePEc: Add citation now
- Busaeri, N.; Hiron, N.; Giriantari, I.A.D.; Ariastina, W.G.; Swamardika, I.B.A. Green Campus Establishment Through Carbon Emission and Energy Efficiency Control. In Proceedings of the 2021 International Conference on Smart-Green Technology in Electrical and Information Systems (ICSGTEIS), Sanur, Bali, Indonesia, 28–30 October 2021; pp. 106–111.
Paper not yet in RePEc: Add citation now
Chau, C.K.; Leung, T.M.; Ng, W.Y. A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Appl. Energy 2015, 143, 395–413. [CrossRef]
- Chen, Z.J.; Gu, H.M.; Bergman, R.D.; Liang, S.B. Comparative Life-Cycle Assessment of a High-Rise Mass Timber Building with an Equivalent Reinforced Concrete Alternative Using the Athena Impact Estimator for Buildings. Sustainability 2020, 12, 4708. [CrossRef] Sustainability 2024, 16, 6579 19 of 20
Paper not yet in RePEc: Add citation now
- Chung, M.H.; Rhee, E.K. Potential opportunities for energy conservation in existing buildings on university campus: A field survey in Korea. Energy Build. 2014, 78, 176–182. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ciroth, A. Software for life cycle assessment. In Life Cycle Assessment Handbook; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 143–157.
Paper not yet in RePEc: Add citation now
- Climate Zones Buildings. Available online: https://www.energy.gov/eere/buildings/climate-zones (accessed on 22 May 2024).
Paper not yet in RePEc: Add citation now
- Cornago, S.; Tan, Y.S.; Ramakrishna, S.; Low, J.S.C. Temporal hotspot identification using dynamic life cycle inventory: Which are the critical time-spans within the product life cycle? Procedia CIRP 2022, 105, 249–254. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cuerda, E.; Guerra-Santin, O.; Sendra, J.; Neila, F. Understanding the performance gap in energy retrofitting: Measured input data for adjusting building simulation models. Energy Build. 2020, 209, 109688. [CrossRef]
Paper not yet in RePEc: Add citation now
- Del Borghi, A.; Spiegelhalter, T.; Moreschi, L.; Gallo, M. Carbon-Neutral-Campus Building: Design Versus Retrofitting of Two University Zero Energy Buildings in Europe and in the United States. Sustainability 2021, 13, 9023. [CrossRef]
Paper not yet in RePEc: Add citation now
- Delehan, S.; Vilceková, S.; Melehanych, H.; Burdová, E.; Khorolskyi, A. A comparative assessment of the capabilities and success of the wood construction industry in Slovakia and Ukraine based on life cycle assessment certification standards. Front. Environ. Sci. 2024, 12, 1319823. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dibazar, A.S.; Aliasghar, A.; Behzadnezhad, A.; Shakiba, A.; Pazoki, M. Energy cycle assessment of bioethanol production from sugarcane bagasse by life cycle approach using the fermentation conversion process. Biomass Convers. Biorefin. 2023, 20, 1–20. [CrossRef]
Paper not yet in RePEc: Add citation now
- DIN V 4108; Wärmeschutz und Energie-Einsparung in Gebäuden–Berechnung des Jahresheizwärme-und des Jahresheizenergiebedarfs. Beuth: Berlin, Germany, 2003.
Paper not yet in RePEc: Add citation now
Dodoo, A.; Gustavsson, L.; Sathre, R. Effect of thermal mass on life cycle primary energy balances of a concrete-and a wood-frame building. Appl. Energy 2012, 92, 462–472. [CrossRef]
- Dong, Y.; Qin, T.; Zhou, S.; Huang, L.; Bo, R.; Guo, H.; Yin, X. Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums-A Case Study in China. Sustainability 2020, 12, 1566. [CrossRef]
Paper not yet in RePEc: Add citation now
- Duan, Z.C. Impact of climate change on the life cycle greenhouse gas emissions of cross-laminated timber and reinforced concrete buildings in China. J. Clean. Prod. 2023, 395, 136446. [CrossRef]
Paper not yet in RePEc: Add citation now
- Felmer, G.; Morales-Vera, R.; Astroza, R.; González, I.; Puettmann, M.; Wishnie, M. A Lifecycle Assessment of a Low-Energy Mass-Timber Building and Mainstream Concrete Alternative in Central Chile. Sustainability 2022, 14, 1249. [CrossRef]
Paper not yet in RePEc: Add citation now
- Findler, F.; Schönherr, N.; Lozano, R.; Stacherl, B. Assessing the Impacts of Higher Education Institutions on Sustainable Development-An Analysis of Tools and Indicators. Sustainability 2019, 11, 59. [CrossRef]
Paper not yet in RePEc: Add citation now
- Greene, J.M.; Hosanna, H.R.; Willson, B.; Quinn, J.C. Whole life embodied emissions and net-zero emissions potential for a mid-rise office building constructed with mass timber. Sustain. Mater. Technol. 2023, 35, e00528. [CrossRef]
Paper not yet in RePEc: Add citation now
- Guan, J.; Nord, N.; Chen, S.Q. Energy planning of university campus building complex: Energy usage and coincidental analysis of individual buildings with a case study. Energy Build. 2016, 124, 99–111. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hacker, J.N.; De Saulles, T.P.; Minson, A.J.; Holmes, M.J. Embodied and operational carbon dioxide emissions from housing: A case study on the effects of thermal mass and climate change. Energy Build. 2008, 40, 375–384. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hafner, A. Contribution of timber buildings on sustainability issues. World Sustain. Build. 2014, 4. Available online: https://scholar. google.com/scholar?hl=en&as_sdt=0,4&q=.+Contribution+of+timber+buildings+on+sustainability+issues&btnG= (accessed on 5 March 2024).
Paper not yet in RePEc: Add citation now
- Hemmati, M.; Messadi, T.; Gu, H. Life Cycle Assessment of the Construction Process in a Mass Timber Structure. Sustainability 2024, 16, 262. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hemmati, M.; Messadi, T.; Gu, H.; Seddelmeyer, J.; Hemmati, M. Comparison of Embodied Carbon Footprint of a Mass Timber Building Structure with a Steel Equivalent. Buildings 2024, 14, 1276. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hemmati, M.; Messadi, T.; Gu, H.M. Life Cycle Assessment of Cross-Laminated Timber Transportation from Three Origin Points. Sustainability 2022, 14, 336. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hong, T.; Langevin, J.; Sun, K. Building simulation: Ten challenges. Build. Simul. 2018, 11, 871–898. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ingrao, C.; Scrucca, F.; Tricase, C.; Asdrubali, F. A comparative Life Cycle Assessment of external wall-compositions for cleaner construction solutions in buildings. J. Clean. Prod. 2016, 124, 283–298. [CrossRef]
Paper not yet in RePEc: Add citation now
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
Paper not yet in RePEc: Add citation now
- Jayalath, A.; Navaratnam, S.; Ngo, T.; Mendis, P.; Hewson, N.; Aye, L. Life cycle performance of Cross Laminated Timber mid-rise residential buildings in Australia. Energy Build. 2020, 223, 110091. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kisku, N.; Joshi, H.; Ansari, M.; Panda, S.K.; Nayak, S.; Dutta, S.C. A critical review and assessment for usage of recycled aggregate as sustainable construction material. Constr. Build. Mater. 2017, 131, 721–740. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kofoworola, O.F.; Gheewala, S.H. Environmental life cycle assessment of a commercial office building in Thailand. Int. J. Life Cycle Assess. 2008, 13, 498–511. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kurian, R.; Kulkarni, K.; Ramani, P.; Meena, C.; Kumar, A.; Cozzolino, R. Estimation of Carbon Footprint of Residential Building in Warm Humid Climate of India through BIM. Energies 2021, 14, 4237. [CrossRef]
Paper not yet in RePEc: Add citation now
- La Fleur, L.; Moshfegh, B.; Rohdin, P. Measured and predicted energy use and indoor climate before and after a major renovation of an apartment building in Sweden. Energy Build. 2017, 146, 98–110. [CrossRef]
Paper not yet in RePEc: Add citation now
- Leal, W.; Vidal, D.; Dinis, M.; Lambrechts, W.; Vasconcelos, C.; Molthan-Hill, P.; Abubakar, I.; Dunk, R.; Salvia, A. Low carbon futures: Assessing the status of decarbonisation efforts at universities within a 2050 perspective. Energy Sustain. Soc. 2023, 13, 5. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lee, D.; Kim, J.; Lee, S. Optimal Design of Truss Structures for Sustainable Carbon Emission Reduction in Korean Construction. Sustainability 2024, 16, 5830. [CrossRef]
Paper not yet in RePEc: Add citation now
- Legorburu, G.; Smith, A.D. Incorporating observed data into early design energy models for life cycle cost and carbon emissions analysis of campus buildings. Energy Build. 2020, 224, 110279. [CrossRef]
Paper not yet in RePEc: Add citation now
- Louisiana Public Service Commission Approves SWEPCO Renewable Projects. Available online: https://www.swepco.com/ company/news/view?releaseID=9011 (accessed on 22 May 2024). Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Mansourihanis, O.; Tilaki, M.J.M.; Yousefian, S.; Zaroujtaghi, A. A Computational Geospatial Approach to Assessing Land-Use Compatibility in Urban Planning. Land 2023, 12, 2083. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mansourihanis, O.; Zaroujtaghi, A.; Hemmati, M.; Maghsoodi Tilaki, M.J.; Alipour, M. Unraveling the Tourism–Environment– Equity Nexus: A Neighborhood-Scale Analysis of Texas Urban Centers. Urban Sci. 2024, 8, 82. [CrossRef]
Paper not yet in RePEc: Add citation now
- Marjaba, G.E.; Chidiac, S.E. Sustainability and resiliency metrics for buildings—Critical review. Build. Environ. 2016, 101, 116–125. [CrossRef]
Paper not yet in RePEc: Add citation now
- Nagpal, S.; Reinhart, C.F. A comparison of two modeling approaches for establishing and implementing energy use reduction targets for a university campus. Energy Build. 2018, 173, 103–116. [CrossRef]
Paper not yet in RePEc: Add citation now
Ortiz, O.; Castells, F.; Sonnemann, G. Operational energy in the life cycle of residential dwellings: The experience of Spain and Colombia. Appl. Energy 2010, 87, 673–680. [CrossRef]
- Pierobon, F.; Huang, M.; Simonen, K.; Ganguly, I. Environmental benefits of using hybrid CLT structure in midrise non-residential construction: An LCA based comparative case study in the U.S. Pacific Northwest. J. Build. Eng. 2019, 26, 100862. [CrossRef]
Paper not yet in RePEc: Add citation now
- PRé. Sustainability That Makes a Difference. 2024. Available online: https://www.pre-sustainability.com/ (accessed on 5 March 2024).
Paper not yet in RePEc: Add citation now
- Quintana-Gallardo, A.; Schau, E.M.; Niemelä, E.P.; Burnard, M.D. Comparing the environmental impacts of wooden buildings in Spain, Slovenia, and Germany. J. Clean. Prod. 2021, 329, 129587, Erratum in J. Clean. Prod. 2022, 331, 129984. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ramesh, T.; Prakash, R.; Shukla, K.K. Life cycle energy analysis of buildings: An overview. Energy Build. 2010, 42, 1592–1600. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ramon, D.; Allacker, K.; Trigaux, D.; Wouters, H.; van Lipzig, N.P.M. Dynamic modelling of operational energy use in a building LCA: A case study of a Belgian office building. Energy Build. 2023, 278, 112634. [CrossRef]
Paper not yet in RePEc: Add citation now
Rinne, R.; Ilgin, H.E.; Karjalainen, M. Comparative Study on Life-Cycle Assessment and Carbon Footprint of Hybrid, Concrete and Timber Apartment Buildings in Finland. Int. J. Environ. Res. Public Health 2022, 19, 774. [CrossRef] [PubMed]
- Rostami, E.; Vahid, R.; Zarei, A.; Amani, M. Dynamic Analysis of Water Surface Extent and Climate Change Parameters in Zarivar Lake, Iran. Environ. Sci. Proc. 2024, 29, 71. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sadeghi, M.; Naghedi, R.; Behzadian, K.; Shamshirgaran, A.; Tabrizi, M.R.; Maknoon, R. Customisation of green buildings assessment tools based on climatic zoning and experts judgement using K-means clustering and fuzzy AHP. Build. Environ. 2022, 223, 109473. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sandanayake, M.; Lokuge, W.; Zhang, G.M.; Setunge, S.; Thushar, Q. Greenhouse gas emissions during timber and concrete building construction—A scenario based comparative case study. Sustain. Cities Soc. 2018, 38, 91–97. [CrossRef]
Paper not yet in RePEc: Add citation now
- Saturated Steam—Properties—Imperial Units. Available online: https://www.engineeringtoolbox.com/saturated-steamproperties -d_273.html (accessed on 10 February 2024).
Paper not yet in RePEc: Add citation now
- Save, P.; Cavka, B.T.; Froese, T. Evaluation and Lessons Learned from a Campus as a Living Lab Program to Promote Sustainable Practices. Sustainability 2021, 13, 1739. [CrossRef]
Paper not yet in RePEc: Add citation now
- Scannell, L.; Grouzet, F.M.E. The metacognitions of climate change. New Ideas Psychol. 2010, 28, 94–103. [CrossRef]
Paper not yet in RePEc: Add citation now
- Schenk, D.; Amiri, A. Life cycle energy analysis of residential wooden buildings versus concrete and steel buildings: A review. Front. Built Environ. 2022, 8, 975071. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sun, K.; Hong, T.; Kim, J.; Hooper, B. Application and evaluation of a pattern-based building energy model calibration method using public building datasets. Build. Simul. 2022, 15, 1385–1400. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sustainability. Available online: https://sustainability.uark.edu/ (accessed on 2 March 2024).
Paper not yet in RePEc: Add citation now
- Takano, A.; Hafner, A.; Linkosalmi, L.; Ott, S.; Hughes, M.; Winter, S. Life cycle assessment of wood construction according to the normative standards. Eur. J. Wood Wood Prod. 2015, 73, 299–312. [CrossRef]
Paper not yet in RePEc: Add citation now
- U.S. Life Cycle Inventory Database. Available online: https://www.lcacommons.gov/nrel/search (accessed on 2 February 2024).
Paper not yet in RePEc: Add citation now
- Upton, B.; Miner, R.; Spinney, M.; Heath, L.S. The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. Biomass Bioenergy 2008, 32, 1–10. [CrossRef]
Paper not yet in RePEc: Add citation now
- Vidal, R.; Sánchez-Pantoja, N.; Martínez, G. Life cycle assessment of a residential building with cross-laminated timber structure in Granada-Spain. Inf. Constr. 2019, 71, 289. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, D.; Pang, X.; Wang, W.; Qi, Z.; Ji, Y.; Yin, R. Evaluation of the dynamic energy performance gap of green buildings: Case studies in China. Build. Simul. 2020, 13, 1191–1204. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, S.; Huang, X.; Liu, P.; Zhang, M.; Biljecki, F.; Hu, T.; Fu, X.; Liu, L.; Liu, X.; Wang, R.; et al. Mapping the landscape and roadmap of geospatial artificial intelligence (GeoAI) in quantitative human geography: An extensive systematic review. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103734. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, Y.; Bermukhambetova, A.; Wang, J.-H.; Donner, M.; Lv, J.-F.; Gao, Q.-R. Modelling of the whole process of a university campus CHP power plant and dynamic performance study. Int. J. Autom. Comput. 2016, 13, 53–63. [CrossRef]
Paper not yet in RePEc: Add citation now
- Water and Sewer Operations. Available online: https://www.fayetteville-ar.gov/426/Water-and-Sewer-Operations (accessed on 2 February 2024).
Paper not yet in RePEc: Add citation now
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [CrossRef]
Paper not yet in RePEc: Add citation now
- Xue, Z.Y.; Liu, H.B.; Zhang, Q.X.; Wang, J.X.; Fan, J.L.; Zhou, X. The Impact Assessment of Campus Buildings Based on a Life Cycle Assessment-Life Cycle Cost Integrated Model. Sustainability 2020, 12, 294. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yan, H.; Shen, Q.P.; Fan, L.C.H.; Wang, Y.W.; Zhang, L. Greenhouse gas emissions in building construction: A case study of One Peking in Hong Kong. Build. Environ. 2010, 45, 949–955. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yin, L.; Shaw, S.-L.; Yu, H. Potential effects of ICT on face-to-face meeting opportunities: A GIS-based time-geographic approach. J. Transp. Geogr. 2011, 19, 422–433. [CrossRef] Sustainability 2024, 16, 6579 20 of 20
Paper not yet in RePEc: Add citation now
- Yoshino, H.; Hong, T.; Nord, N. IEA EBC annex 53: Total energy use in buildings Analysis and evaluation methods. Energy Build. 2017, 152, 124–136. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zabalza, I.; Scarpellini, S.; Aranda, A.; Llera, E.; Jáñez, A. Use of LCA as a Tool for Building Ecodesign. A Case Study of a Low Energy Building in Spain. Energies 2013, 6, 3901–3921. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhu, H.; Liou, S.R.; Chen, P.C.; He, X.Y.; Sui, M.L. Carbon Emissions Reduction of a Circular Architectural Practice: A Study on a Reversible Design Pavilion Using Recycled Materials. Sustainability 2024, 16, 1729. [CrossRef]
Paper not yet in RePEc: Add citation now