- Al-Selwi, S.M.; Hassan, M.F.; Abdulkadir, S.J.; Muneer, A.; Sumiea, E.H.; Alqushaibi, A.; Ragab, M.G. RNN-LSTM: From applications to modeling techniques and beyond—Systematic review. J. King Saud. Univ.-Comput. Inf. Sci. 2024, 36, 102068. [CrossRef]
Paper not yet in RePEc: Add citation now
Balcılar, M.; Demirer, R.; Hammoudeh, S.; Nguyen, D.K. Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk. Energy Econ. 2016, 54, 159–172. [CrossRef]
Batten, J.A.; Maddox, G.E.; Young, M.R. Does weather, or energy prices, affect carbon prices. Energy Econ. 2021, 96, 105016. [CrossRef]
- Böhringer, C.; Hoffmann, T.; Manrique-de-Lara-Peñate, C. The efficiency costs of separating carbon markets under the EU emissions trading scheme: A quantitative assessment for Germany. Energy Econ. 2006, 28, 44–61. [CrossRef]
Paper not yet in RePEc: Add citation now
- Chen, H.; Zhang, L.; Xiong, G.; Zhou, J. MSE and PNN fault diagnosis method for rolling bearings. Noise Vib. Control 2014, 34, 169–173.
Paper not yet in RePEc: Add citation now
- Cheng, J.; Jiang, Y. How can carbon markets drive the development of renewable energy sector? Empirical evidence from China. Data Sci. Financ. Econ. 2024, 4, 249–269. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cui, L.; Fan Yi Zhu, L.; Bi, Q.; Zhang, Y. Research on the Cost-saving Effect of Carbon Emission Trading on Achieving China’s “Twelfth Five-Year Plan” Emission Reduction Goals. China Manag. Sci. 2013, 21, 37–46.
Paper not yet in RePEc: Add citation now
- Gao, C.; Li, D.; Wang, X.; Guo, S. Research on the prediction of regional carbon emission trading prices using intelligent machine learning methods: An analysis based on Hubei carbon market data. Price Theory Pract. 2022, 4, 89–93.
Paper not yet in RePEc: Add citation now
Huang, Y.; Dai, X.; Wang, Q.; Zhou, D. A hybrid model for carbon price forecasting using GARCH and long short-term memory network. Appl. Energy 2021, 285, 116485. [CrossRef]
- Idowu, A.; Ohikhuare, O.M.; Chowdhury, M.A. Does industrialization trigger carbon emissions through energy consumption? Evidence from OPEC countries and high industrialised countries. Quant. Financ. Econ. 2023, 7, 165–186. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jia, Z.; Lin, B. CEEEA2. 0 model: A dynamic CGE model for energy-environment-economy analysis with available data and code. Energy Econ. 2022, 112, 106117. [CrossRef]
Paper not yet in RePEc: Add citation now
Kakade, K.; Jain, I.; Mishra, A.K. Value-at-Risk forecasting: A hybrid ensemble learning GARCH-LSTM based approach. Resour. Policy 2022, 78, 102903. [CrossRef]
Li, D.; Li, Y.; Wang, C.; Chen, M.; Wu, Q. Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks. Appl. Energy 2023, 331, 120452. [CrossRef]
- Li, G. Analysis of the Causes of Global Warming. J. Nat. Disasters 2005, 5, 42–46.
Paper not yet in RePEc: Add citation now
- Lin, Z. Modelling and forecasting the stock market volatility of SSE composite index using GARCH models. Future Gener. Comput. Syst. 2018, 7, 960–972. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, S.; Zhang, Y.; Wang, J.; Feng, D. Fluctuations and Forecasting of Carbon Price Based on A Hybrid Ensemble Learning GARCH-LSTM-Based Approach: A Case of Five Carbon Trading Markets in China. Sustainability 2024, 16, 1588. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lv, J.; Du, J.; Cao, M.; Fan, X. Carbon emission trading price prediction using ARIMA-SVM model. J. Xi’an Univ. Sci. Technol. 2020, 40, 542–548.
Paper not yet in RePEc: Add citation now
- McCollum, D.L.; Zhou, W.; Bertram, C.; De Boer, H.-S.; Bosetti, V.; Busch, S.; Després, J.; Drouet, L.; Emmerling, J.; Fay, M.; et al. Energy investment needs for fulfilling the Paris agreement and achieving the sustainable development goals. Nat. Energy 2018, 3, 589–599. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mu, G.; Dai, L.; Ju, X.; Chen, Y.; Huang, X. MS-IHHO-LSTM: Carbon price prediction model of multi-source data based on improved swarm intelligence algorithm and deep learning method. IEEE Access 2024, 12, 80754–80769. [CrossRef] Sustainability 2024, 16, 8324 16 of 16
Paper not yet in RePEc: Add citation now
Rodríguez-García, M.I.; Carrasco-García, M.G.; González-Enrique, J.; Ruiz-Aguilar, J.J.; Turias, I.J. Long short-term memory approach for short-term air quality forecasting in the Bay of Algeciras (Spain). Sustainability 2023, 15, 5089. [CrossRef]
- Shen, H.; Huang, N.; Liu, L. Micro-effects and mechanism of carbon emission trading. J. Xiamen Univ. (Philos. Soc. Sci.) 2017, 1, 13–22.
Paper not yet in RePEc: Add citation now
- Sun, W.; Huang, C. A novel carbon price prediction model combines the secondary decomposition algorithmand the long short-term memory network. Energy 2020, 207, 118294. [CrossRef]
Paper not yet in RePEc: Add citation now
Wang, J.; Cui, Q.; He, M. Hybrid intelligent framework for carbon price prediction using improved variational mode decomposition and optimal extreme learning machine. Chaos Solitons Fractals 2022, 156, 111783. [CrossRef]
- Wang, J.; Cui, Q.; Sun, X. A novel framework for carbon price prediction using comprehensive feature screening, bidirectional gate recurrent unit and Gaussian process regression. J. Clean. Prod. 2021, 314, 128024. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, J.J.; Sun, X.; Cheng, Q.; Cui, Q. An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting. Sci. Total Environ. 2021, 762, 143099. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wei, X.; Ouyang, H. Carbon price prediction based on a scaled PCA approach. PLoS ONE 2024, 19, e0296105. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wei, Y.; Zhu, R.; Tan, L. Emission trading scheme, technological innovation, and competitiveness: Evidence from China’s thermal power enterprises. J. Environ. Manag. 2022, 320, 115874. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yang, L.; Wu, Y.; Wang, J.; Liu, Y. A review of recurrent neural networks. Comput. Appl. 2018, 38 (Suppl. S2), 1–6+26.
Paper not yet in RePEc: Add citation now
Ye, J.; Xue, M. Influences of sentiment from news articles on EU carbon prices. Energy Econ. 2021, 101, 105393. [CrossRef]
- Yu, H.; Jiang, Y.; Zhang, Z.; Shang, W.-L.; Han, C.; Zhao, Y. The impact of carbon emission trading policy on firms’ green innovation in China. Financ. Innov. 2022, 8, 1–24. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yun, P.; Huang, X.; Wu, Y.; Yang, X. Forecasting carbon dioxide emission price using a novel mode decomposition machine learning hybrid model of CEEMDAN-LSTM. Energy Sci. Eng. 2023, 11, 79–96. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yun, P.; Tang, W.; Huang, H. Prediction of China’s carbon emission rights price based on time-varying high-order moment NAGARCHSK-LSTM model. J. Anhui Agric. Univ. (Soc. Sci. Ed.) 2021, 30, 48–57.
Paper not yet in RePEc: Add citation now
Zahraee, S.M.; Shiwakoti, N.; Stasinopoulos, P. Application of geographical information system and agent-based modeling to estimate particle-gaseous pollutantemissions and transportation cost of woody biomass supply chain. Appl. Energy 2022, 309,
- Zhang, N.; Fang, J.; Zhao, Y. Bitcoin price prediction based on LSTM hybrid model. Comput. Sci. 2021, 48 (Suppl. S2), 39–45. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, X.; Wang, X. A review of grey wolf optimization algorithms. Comput. Sci. 2019, 46, 30–38.
Paper not yet in RePEc: Add citation now
- Zhang, Y.J.; Wei, Y.M. Mean Regression of International Carbon Futures Prices: Empirical Analysis Based on EU ETS. Syst. Eng. Theory Pract. 2011, 31, 214–220.
Paper not yet in RePEc: Add citation now
- Zhou, F.; Huang, Z.; Zhang, C. Carbon price forecasting based on CEEMDAN and LSTM. Appl. Energy 2022, 311, 118601. [CrossRef] Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Zhu, B.; Wang, P.; Wei, Y. Multi-scale analysis of the influencing factors of carbon market prices based on EMD. Econ. Perspect. 2012, 6, 92–97.
Paper not yet in RePEc: Add citation now
Zhu, B.; Wei, Y.M. Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology. Omega 2013, 41, 517–524. [CrossRef]