- Agresti, A. (2013). Categorical data analysis (3rd ed.). Hoboken, New Jersey: John Wiley & Sons.
Paper not yet in RePEc: Add citation now
- Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Monographs on Statistics and Applied Probability. London [u.a.]: Chapman and Hall, 1st ed.
Paper not yet in RePEc: Add citation now
Antle, J. M. (2019). Data, economics and computational agricultural science. American Journal of Agricultural Economics, 101, 365–382. https://doi.org/10.1093/ajae/aay103 .
- Asher, M. J., Croke, B. F. W., Jakeman, A. J., & Peeters, L. J. M. (2015). A review of surrogate models and their application to groundwater modeling. Water Resources Research, 51, 5957–5973. https://doi.org/10.1002/2015WR016967 .
Paper not yet in RePEc: Add citation now
- Baustert, P., & Benetto, E. (2017). Uncertainty analysis in agent-based modelling and consequential life cycle assessment coupled models: A critical review. Journal of Cleaner Production, 156, 378–394. https://doi.org/10.1016/j.jclepro.2017.03.193 .
Paper not yet in RePEc: Add citation now
- Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937–1967. https://doi.org/10.1007/s10462-020-09896-5 .
Paper not yet in RePEc: Add citation now
Berger, T., & Troost, C. (2014). Agent-based modelling of climate adaptation and mitigation options in agriculture. Journal of Agricultural Economics, 65, 323–348. https://doi.org/10.1111/1477-9552.12045 .
- Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13, 281–305.
Paper not yet in RePEc: Add citation now
- Boogaart, K. G. van den, Tolosana-Delgado, R., & Bren, M. (2021). R package compositions: Compositional data analysis. https://CRAN.R-project.org/package=compositions .
Paper not yet in RePEc: Add citation now
- Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324 .
Paper not yet in RePEc: Add citation now
- Brown, C., Holman, I., & Rounsevell, M. (2021). How modelling paradigms affect simulated future land use change. Earth System Dynamics, 12, 211–231. https://doi.org/10.5194/esd-12-211-2021 .
Paper not yet in RePEc: Add citation now
- Buysse, J., Huylenbroeck, G. V., & Lauwers, L. (2007). Normative, positive and econometric mathematical programming as tools for incorporation of multifunctionality in agricultural policy modelling. Agriculture, Ecosystems and Environment, 120, 70–81. https://doi.org/10.1016/j.agee.2006.03.035 .
Paper not yet in RePEc: Add citation now
- Campolongo, F., Cariboni, J., & Saltelli, A. (2007). An effective screening design for sensitivity analysis of large models. Environmental Modelling and Software, 22, 1509–1518. https://doi.org/10.1016/j.envsoft.2006.10.004 .
Paper not yet in RePEc: Add citation now
- Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’16. New York, NY, USA: Association for Computing Machinery, 785–794, https://doi.org/10.1145/2939672.2939785 .
Paper not yet in RePEc: Add citation now
- Domínguez, I. P., Bezlepkina, I., Heckelei, T., Romstad, E., Lansink, A. O., & Kanellopoulos, A. (2009). Capturing market impacts of farm level policies: a statistical extrapolation approach using biophysical characteristics and farm resources. Environmental Science and Policy, 12, 588–600. https://doi.org/10.1016/j.envsci.2009.02.006 .
Paper not yet in RePEc: Add citation now
- Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barceló-Vidal, C. (2003). Isometric Logratio Transformations for compositional data analysis. Mathematical Geology, 35, 279–300. https://doi.org/10.1023/A:1023818214614 .
Paper not yet in RePEc: Add citation now
- Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19, 1–67.
Paper not yet in RePEc: Add citation now
Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics and Data Analysis, 38, 367–378. https://doi.org/10.1016/S0167-9473(01)00065-2 .
- Gramacy, R. B., & Lee, H. K. H. (2009). Adaptive design and analysis of supercomputer experiments. Technometrics, 51, 130–145. https://doi.org/10.1198/TECH.2009.0015 .
Paper not yet in RePEc: Add citation now
Happe, K., Kellermann, K., & Balmann, A. (2006). Agent-based analysis of agricultural policies: An illustration of the agricultural policy simulator AgriPoliS, its adaptation, and behavior. Ecology and Society, 11, 49.
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer.
Paper not yet in RePEc: Add citation now
- Jakeman, A., Letcher, R., & Norton, J. (2006). Ten iterative steps in development and evaluation of environmental models. Environmental Modelling and Software, 21, 602–614.
Paper not yet in RePEc: Add citation now
Kleijnen, J. P. C. (2017). Regression and Kriging metamodels with their experimental designs in simulation: A review. European Journal of Operational Research, 256, 1–16. https://doi.org/10.1016/j.ejor.2016.06.041 .
Kremmydas, D., Athanasiadis, I., & Rozakis, S. (2018). A review of agent based modeling for agricultural policy evaluation. Agricultural Systems, 164, 95–106.
Lamperti, F., Roventini, A., & Sani, A. (2018). Agent-based model calibration using machine learning surrogates. Journal of Economic Dynamics and Control, 90, 366–389. https://doi.org/10.1016/j.jedc.2018.03.011 .
Lee, J. S., Filatova, T., Ligmann-Zielinska, A., Hassani-Mahmooei, B., Stonedahl, F., Lorscheid, I., Voinov, A., Polhill, G., Sun, Z., & Parker, D. C. (2015). The complexities of agent-based modeling output analysis. The Journal of Artificial Societies and Social Simulation, 18,. https://doi.org/10.18564/jasss.2897 .
- Leisch, F., Hornik, K., Ripley, B. D., Narasimhan, B., Hastie, T., & Tibshirani, R. (2020). R package Mda: Mixture and Flexible Discriminant Analysis. https://CRAN.R-project.org/package=mda .
Paper not yet in RePEc: Add citation now
Lengers, B., Britz, W., & Holm-Müller, K. (2014). What drives marginal abatement costs of greenhouse gases on dairy farms? A meta-modelling approach. Journal of Agricultural Economics, 65, 579–599. https://doi.org/10.1111/1477-9552.12057 .
- Lippe, M., Bithell, M., Gotts, N., Natalini, D., Barbrook-Johnson, P., Giupponi, C., Hallier, M., Hofstede, G. J., Le Page, C., Matthews, R. B., Schlüter, M., Smith, P., Teglio, A., & Thellmann, K. (2019). Using agent-based modelling to simulate social-ecological systems across scales. GeoInformatica, 23, 269–298. https://doi.org/10.1007/s10707-018-00337-8 .
Paper not yet in RePEc: Add citation now
Mössinger, J., Troost, C., & Berger, T. (2022). Bridging the gap between models and users: A lightweight mobile interface for optimized farming decisions in interactive modeling sessions. Agricultural Systems, 195, 103315. https://doi.org/10.1016/j.agsy.2021.103315 .
- Müller-Hansen, F., Schlüter, M., Mäs, M., Donges, J. F., Kolb, J. J., Thonicke, K., & Heitzig, J. (2017). Towards representing human behavior and decision making in Earth system models—An overview of techniques and approaches. Earth System Dynamics, 8, 977–1007. https://doi.org/10.5194/esd-8-977-2017 .
Paper not yet in RePEc: Add citation now
- Müller, B., Hoffmann, F., Heckelei, T., Müller, C., Hertel, T. W., Polhill, J. G., van Wijk, M., Achterbosch, T., Alexander, P., Brown, C., Kreuer, D., Ewert, F., Ge, J., Millington, J. D. A., Seppelt, R., Verburg, P. H., & Webber, H. (2020). Modelling food security: Bridging the gap between the micro and the macro scale. Global Environmental Change, 63, 102085. https://doi.org/10.1016/j.gloenvcha.2020.102085 .
Paper not yet in RePEc: Add citation now
- Oshiro, T. M., Perez, P. S. and Baranauskas, J. A. (2012). How Many Trees in a Random Forest? In Perner, P. (ed.), Machine Learning and Data Mining in Pattern Recognition, Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 154–168, doi:10.1007/978-3-642-31537-4_13.
Paper not yet in RePEc: Add citation now
- Pawlowsky-Glahn, V., & Buccianti, A. (2011). Compositional data analysis: theory and applications. London: John Wiley & Sons.
Paper not yet in RePEc: Add citation now
- Pawlowsky-Glahn, V., & Egozcue, J. J. (2001). Geometric approach to statistical analysis on the simplex. Stochastic Environmental Research and Risk Assessment, 15, 384–398. https://doi.org/10.1007/s004770100077 .
Paper not yet in RePEc: Add citation now
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. Journal of machine learning research, 12, 2825–2830.
Paper not yet in RePEc: Add citation now
- Probst, P., Wright, M. N., & Boulesteix, A.-L. (2019). Hyperparameters and tuning strategies for random forest. WIREs Data Mining and Knowledge Discovery, 9, e1301. https://doi.org/10.1002/widm.1301 .
Paper not yet in RePEc: Add citation now
Reidsma, P., Janssen, S., Jansen, J., & van Ittersum, M. K. (2018). On the development and use of farm models for policy impact assessment in the European Union—A review. Agricultural Systems, 159, 111–125.
- Ripley, B., & Venables, W. (2021). R package nnet: Feed-Forward Neural Networks and Multinomial Log-Linear Models. https://CRAN.R-project.org/package=nnet .
Paper not yet in RePEc: Add citation now
Salle, I., & Yıldızoğlu, M. (2014). Efficient sampling and meta-modeling for computational economic models. Computational Economics, 44, 507–536. https://doi.org/10.1007/s10614-013-9406-7 .
- Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2004). Sensitivity analysis in practice—A guide to assessing scientific models. Chichester: Wiley.
Paper not yet in RePEc: Add citation now
- Schreinemachers, P., & Berger, T. (2011). MP-MAS: An agent-based simulation model of human-environment interaction in agricultural systems. Environmental Modelling and Software, 26, 845–859.
Paper not yet in RePEc: Add citation now
Storm, H., Baylis, K., & Heckelei, T. (2020). Machine learning in agricultural and applied economics. European Review of Agricultural Economics, 47, 849–892. https://doi.org/10.1093/erae/jbz033 .
- Tarantola, S., Becker, W., & Zeitz, D. (2012). A comparison of two sampling methods for global sensitivity analysis. Computer Physics Communications, 183, 1061–1072. https://doi.org/10.1016/j.cpc.2011.12.015 .
Paper not yet in RePEc: Add citation now
Troost, C., & Berger, T. (2015). Dealing with uncertainty in agent-based simulation: Farm-level modeling of adaptation to climate change in Southwest Germany. American Journal of Agricultural Economics, 97, 833–854. https://doi.org/10.1093/ajae/aau076 .
- Troost, C., Walter, T., & Berger, T. (2015). Climate, energy and environmental policies in agriculture: Simulating likely farmer responses in Southwest Germany. Land Use Policy, 46, 50–64. https://doi.org/10.1016/j.landusepol.2015.01.028 .
Paper not yet in RePEc: Add citation now
van der Hoog, S. (2019). Surrogate modelling in (and of) agent-based models: A prospectus. Computational Economics, 53, 1245–1263. https://doi.org/10.1007/s10614-018-9802-0 .
van Wijk, M. T. (2014). From global economic modelling to household level analyses of food security and sustainability: How big is the gap and can we bridge it? Food Policy 49. Part, 2, 378–388. https://doi.org/10.1016/j.foodpol.2014.10.003 .
- van Wijk, M., Rufino, M., Enahoro, D., Parsons, D., Silvestri, S., Valdivia, R., & Herrero, M. (2014). Farm household models to analyse food security in a changing climate: A review. Global Food Security, 3, 77–84. https://doi.org/10.1016/j.gfs.2014.05.001 .
Paper not yet in RePEc: Add citation now
- Wuertz, D., Setz, T., & Chalabi, Y. (2021). R Package fOptions: Rmetrics—Pricing and Evaluating Basic Options. https://CRAN.R-project.org/package=fOptions .
Paper not yet in RePEc: Add citation now
- xgboost developers (2021). XGBoost documentation - Python Package Introduction (1.4.0). https://xgboost.readthedocs.io/en/latest/python/python_intro.html .
Paper not yet in RePEc: Add citation now