- Adams, R. A., & Fournier, J. J. F. (2003). Sobolev spaces. San Diego: Elsevier.
Paper not yet in RePEc: Add citation now
Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–654.
Carr, P., & Wu, L. (2003). The finite moment log stable process and option pricing. Journal of Finance, 2, 597–626.
- Chen, W., Xu, X., & Zhu, S. (2015a). Analytically pricing double barrier options based on a time-fractional Black–Scholes equation. Computers and Mathematics with Applications, 69, 1407–1419.
Paper not yet in RePEc: Add citation now
- Chen, W., Xu, X., & Zhu, S. (2015b). A predictor–corrector approach for pricing American options under the finite moment log-stable model. Applied Numerical Mathematics, 97, 15–29.
Paper not yet in RePEc: Add citation now
- D’Elia, M., Du, Q., Glusa, C., Gunzburger, M., Tian, X., & Zhou, Z. (2020). Numerical methods for nonlocal and fractional models. Acta Numerica, 29, 1–124.
Paper not yet in RePEc: Add citation now
- De Staelen, R., & Hendy, A. (2017). Numerically pricing double barrier options in a time-fractional Black–Scholes model. Computers and Mathematics with Applications, 74, 1166–1175.
Paper not yet in RePEc: Add citation now
- Dehghan, M., & Pourghanbar, S. (2011). Solution of the Black–Scholes equation for pricing of barrier option. Zeitschrift für Naturforschung A, 66a, 289–296.
Paper not yet in RePEc: Add citation now
- Diethelm, K., & Ford, N. J. (2002). Analysis of fractional differential equations. Journal of Mathematical Analysis and Applications, 265, 229–248.
Paper not yet in RePEc: Add citation now
- Duan, J., Lu, L., Chen, L., & An, Y. (2018). Fractional model and solution for the Black–Scholes equation. Mathematical Methods in the Applied Sciences, 41, 697–704.
Paper not yet in RePEc: Add citation now
- Ervin, V. (2021). Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces. Journal of Differential Equations, 278, 294–325.
Paper not yet in RePEc: Add citation now
Farnoosh, R., Rezazadeh, H., Sobhani, A., & Beheshti, M. (2016). A numerical method for discrete single barrier option pricing with time-dependent parameters. Computational Economics, 48, 131–145.
- Fu, H., Liu, H., & Wang, H. (2019). A finite volume method for two-dimensional Riemann–Liouville space-fractional diffusion equation and its efficient implementation. Journal of Computational Physics, 388, 316–334.
Paper not yet in RePEc: Add citation now
Ghafouri, H., Ranjbar, M., & Khani, A. (2020). The use of partial fractional form of A-stable Padé schemes for the solution of fractional diffusion equation with application in option pricing. Computational Economics, 56, 695–709.
- Ghandehari, M., & Ranjbar, M. (2014). European option pricing of fractional version of the Black–Scholes model: Approach via expansion in series. International Journal of Nonlinear Sciences, 17, 105–110.
Paper not yet in RePEc: Add citation now
Golbabai, A., & Nikan, O. (2020). A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black–Scholes model. Computational Economics, 55, 119–141.
- Golbabai, A., Nikan, O., & Nikazad, T. (2019). Numerical analysis of time fractional Black–Scholes European option pricing model arising in financial market. Computational & Applied Mathematics, 38, 173.
Paper not yet in RePEc: Add citation now
- Jin, B., Li, B., & Zhou, Z. (2018). Numerical analysis of nonlinear subdiffusion equations. SIAM Journal on Numerical Analysis, 56, 1–23.
Paper not yet in RePEc: Add citation now
- Jumarie, G. (2010). Derivation and solutions of some fractional Black–Scholes equations in coarse-grained space and time. Application to Merton’s optimal portfolio. Computers and Mathematics with Applications, 59, 1142–1164.
Paper not yet in RePEc: Add citation now
Kalantari, R., & Shahmorad, S. (2019). A stable and convergent finite difference method for fractional Black–Scholes model of American put option pricing. Computational Economics, 53, 191–205.
- Kazemi, S., Dehghan, M., & Bastani, A. (2017). Asymptotic expansion of solutions to the Black–Scholes equation arising from American option pricing near the expiry. Journal of Computational and Applied Mathematics, 311, 11–37.
Paper not yet in RePEc: Add citation now
- Koleva, M., & Vulkov, L. (2017). Numerical solution of time-fractional Black–Scholes equation. Computational and Applied Mathematics, 36, 1699–1715.
Paper not yet in RePEc: Add citation now
- Korbel, J., & Luchko, Y. (2016). Modeling of financial processes with a space–time fractional diffusion equation of varying order. Fractional Calculus and Applied Analysis, 19, 1414–1433.
Paper not yet in RePEc: Add citation now
- Kumar, S., Yildirim, A., Khan, Y., Jafari, H., Sayevand, K., & Wei, L. (2012). Analytical solution of fractional Black–Scholes European option pricing equation by using Laplace transform. Journal of Fractional Calculus and Applications, 2, 1–9.
Paper not yet in RePEc: Add citation now
- Lin, Y., & Xu, C. (2007). Finite difference/spectral approximations for the time-fractional diffusion equation. Journal of Computational Physics, 225, 1533–1552.
Paper not yet in RePEc: Add citation now
- Lorenzo, C. F., & Hartley, T. T. (2002). Variable order and distributed order fractional operators. Nonlinear Dynamics, 29, 57–98.
Paper not yet in RePEc: Add citation now
- Nikan, O., & Avazzadeh, Z. (2021). An improved localized radial basis-pseudospectral method for solving fractional reaction–subdiffusion problem. Results in Physics, 23, 104048.
Paper not yet in RePEc: Add citation now
- Nikan, O., Avazzadeh, Z., & Machado, J. (2021a). Localized kernel-based meshless method for pricing financial options underlying fractal transmission system. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.7968. .
Paper not yet in RePEc: Add citation now
- Nikan, O., Avazzadeh, Z., & Machado, J. (2021b). A local stabilized approach for approximating the modified time-fractional diffusion problem arising in heat and mass transfer. Journal of Advanced Research, 32, 45–60.
Paper not yet in RePEc: Add citation now
- Nikan, O., Avazzadeh, Z., & Machado, J. (2021c). Numerical study of the nonlinear anomalous reaction–subdiffusion process arising in the electroanalytical chemistry. Journal of Computer Science, 53, 101394.
Paper not yet in RePEc: Add citation now
- Podlubny, I. (1999). Fractional differential equations. Academic Press.
Paper not yet in RePEc: Add citation now
- Shirzadi, M., Dehghan, M., & Bastani, A. (2020a). Optimal uniform error estimates for moving least-squares collocation with application to option pricing under jump-diffusion processes. Numerical Methods for Partial Differential Equations, 37, 98–117.
Paper not yet in RePEc: Add citation now
- Shirzadi, M., Dehghan, M., & Bastani, A. (2020b). On the pricing of multi-asset options under jump-diffusion processes using meshfree moving least-squares approximation. Communications in Nonlinear Science and Numerical Simulation, 84, 105160.
Paper not yet in RePEc: Add citation now
- Shirzadi, M., Dehghan, M., & Bastani, A. (2021). A trustable shape parameter in the kernel-based collocation method with application to pricing financial options. Engineering Analysis with Boundary Elements, 126, 108–117.
Paper not yet in RePEc: Add citation now
- Stynes, M., O’Riordan, E., & Gracia, J. L. (2017). Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation. SIAM Journal on Numerical Analysis, 55, 1057–1079.
Paper not yet in RePEc: Add citation now
- Sun, H. G., Chen, W., Sheng, H., & Chen, Y. (2010). On mean square displacement behaviors of anomalous diffusions with variable and random orders. Physics Letters A, 374, 906–910.
Paper not yet in RePEc: Add citation now
- Sun, Z., & Wu, X. (2006). A fully discrete difference scheme for a diffusion-wave system. Applied Numerical Mathematics, 56, 193–209.
Paper not yet in RePEc: Add citation now
- Thomée, V. (1984). Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Mathematics (Vol. 1054). Springer.
Paper not yet in RePEc: Add citation now
- Wang, H., & Zheng, X. (2019). Analysis and numerical solution of a nonlinear variable-order fractional differential equation. Advances in Computational Mathematics, 45, 2647–2675.
Paper not yet in RePEc: Add citation now
Wilmott, P., Howison, S., & Dewynne, J. (1995). The mathematics of financial derivatives. Cambridge University Press.
- Wyss, W. (2017). The fractional Black–Scholes equation. Fractional Calculus and Applied Analysis, 3, 51–62.
Paper not yet in RePEc: Add citation now
- Zayernouri, M., & Karniadakis, G. E. (2013). Fractional Sturm–Liouville eigen-problems: Theory and numerical approximation. Journal of Computational Physics, 252, 495–517.
Paper not yet in RePEc: Add citation now
- Zeng, F., Zhang, Z., & Karniadakis, G. (2015). A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM Journal on Scientific Computing, 37, A2710–A2732.
Paper not yet in RePEc: Add citation now
- Zhang, H., Liu, F., Turner, I., & Yang, Q. (2016). Numerical solution of the time fractional Black–Scholes model governing European options. Computers & Mathematics with Applications, 71, 1772–1783.
Paper not yet in RePEc: Add citation now
- Zheng, X., & Wang, H. (2021). Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA Journal of Numerical Analysis, 41, 1522–1545.
Paper not yet in RePEc: Add citation now
- Zhuang, P., Liu, F., Anh, V., & Turner, I. (2009). Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM Journal on Numerical Analysis, 47, 1760–1781.
Paper not yet in RePEc: Add citation now