- Andreas, L. P., & Salvatore, J. S. (2001). Cost complexity-based pruning of ensemble classifiers. Knowledge and Information Systems, 3, 449–469.
Paper not yet in RePEc: Add citation now
Ardizzi, G., Petraglia, C., Piacenza, M., & Turati, G. (2014). Measuring the underground economy with the currency demand approach: A reinterpretation of the methodology, with an application to Italy. Review of Income and Wealth, 60(4), 747–772.
Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11(1), 685–725.
- Belgiu, M., & Draguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31.
Paper not yet in RePEc: Add citation now
- Blades, D., & Roberts, D. (2002). Measuring the non-observed economy statistics. OECD, Statistics Brief, 5, 458.
Paper not yet in RePEc: Add citation now
- Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Paper not yet in RePEc: Add citation now
Breusch, T. (2005). Estimating the underground economy using MIMIC models. National University of Australia.
- Breusch, T. (2005). The Canadian underground economy: An examination of Giles and Tedds. Canadian Tax Journal, 53(2), 367.
Paper not yet in RePEc: Add citation now
Cantekin, K., & Elgin, C. (2017). Extent and growth effects of informality in Turkey: Evidence from a firm-level survey. The Singapore Economic Review, 62(05), 1017–1037.
- Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics, 19(1), 458.
Paper not yet in RePEc: Add citation now
- Dybka, P., B. Olesiński, M. Rozkrut, and A. Torój (2020). Measuring the uncertainty of shadow economy estimates using bayesian and frequentist model averaging. Working Paper 2020/046, Szkoła Główna Handlowa W Warszawie.
Paper not yet in RePEc: Add citation now
Dybka, P., Kowalczuk, M., Olesiński, B., Torój, A., & Rozkrut, M. (2019). Currency demand and MIMIC models: Towards a structured hybrid method of measuring the shadow economy. International Tax and Public Finance, 26(1), 4–40.
Elgin, C. and O. Oztunali (2012). Shadow economies around the world: Model based estimates. Working Papers 2012/05, Bogazici University, Department of Economics.
Elgin, C., & Erturk, F. (2019). Informal economies around the world: Measures, determinants and consequences. Eurasian Economic Review, 9(2), 221–237.
- Elgin, C., & Schneider, F. (2016). Shadow economies in OECD countries: DGE versus MIMIC approaches. Bogazici Journal Review of Social Economic Administrative Studies, 30(1), 1–32.
Paper not yet in RePEc: Add citation now
- Enste, D., & Schneider, F. (2002). The shadow economy: Theoretical approaches, empirical studies, and political implications. Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Esling, P., & Agon, C. (2012). Time-series data mining. ACM Computer Survey, 45(1), 142.
Paper not yet in RePEc: Add citation now
Feige, E. L. (2016). Reflections on the meaning and measurement of unobserved economies: What do we really know about the shadow economy. Journal of Tax Administration, 2, 124.
Feld, L. P. and C. Larsen (2012). The size of the German shadow economy and tax morale according to various methods and definitions. In Undeclared Work, Deterrence and Social Norms, (pp. 15–20). Springer.
Feld, L. P., & Schneider, F. (2010). Survey on the shadow economy and undeclared earnings in OECD countries. German Economic Review, 11(2), 109–149.
Ferwerda, J., I. Deleanu, and B. Unger (2010). Revaluating the Tanzi-model to estimate the underground economy. Discussion Paper Series/Tjalling C. Koopmans Research Institute 10(04).
- Frey, B. S., & Weck, H. (1983). Estimating the shadow economy: A ‘naive’ approach. Oxford Economic Papers, 35(1), 23–44.
Paper not yet in RePEc: Add citation now
Gogas, P., Papadimitriou, T., & Sofianos, E. (2022). Forecasting unemployment in the Euro area with machine learning. Journal of Forecasting, 41(3), 551–566.
- Gyomai, G., & van de Ven, P. (2014). The non-observed economy in the system of national accounts. OECD Statistics Brief, 18, 1–12.
Paper not yet in RePEc: Add citation now
Ha, L. T., Dung, H. P., & Thanh, T. T. (2021). Economic complexity and shadow economy: A multi-dimensional analysis. Economic Analysis and Policy, 72, 408–422.
- Heffetz, Y., R. Vainshtein, G. Katz, and L. Rokach (2020). Deepline: Automl tool for pipelines generation using deep reinforcement learning and hierarchical actions filtering. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, (pp. 2103–2113).
Paper not yet in RePEc: Add citation now
- HongXing, Y., Naveed, H. M., Memon, B. A., Ali, S., Haris, M., Akhtar, M., & Mohsin, M. (2023). Connectedness between currency risk hedging and firm value: A deep neural network-based evaluation. Computational Economics, 24, 753.
Paper not yet in RePEc: Add citation now
- Kalousis, A., J. Prados, and M. Hilario (2005). Stability of feature selection algorithms. In Fifth IEEE international conference on data mining (ICDM’05).
Paper not yet in RePEc: Add citation now
- Kaufmann, D., & Kaufmann, A. (1996). Integrating the unofficial economy into the dynamics of post-socialist economies a framework of analysis and evidence. The World Bank.
Paper not yet in RePEc: Add citation now
- Kavitha, S., S. Varuna, and R. Ramya (2016). A comparative analysis on linear regression and support vector regression. In 2016 Online International Conference on Green Engineering and Technologies (IC-GET), (pp. 1–5).
Paper not yet in RePEc: Add citation now
- Kirchgässner, G. (2017). On estimating the size of the shadow economy. German Economic Review, 18(1), 99–111.
Paper not yet in RePEc: Add citation now
- Kohavi, R. (1995). A study of cross validation and bootstrap for accuracy estimation and model select. In International Joint Conference on Artificial Intelligence.
Paper not yet in RePEc: Add citation now
- Lazebnik, T., Bahouth, Z., Bunimovich-Mendrazitsky, S., & Halachmi, S. (2022). Predicting acute kidney injury following open partial nephrectomy treatment using sat-pruned explainable machine learning model. BMC Medical Informatics and Decision Making, 22, 133.
Paper not yet in RePEc: Add citation now
- Liu, R., Liu, E., Yang, J., Li, M., & Wang, F. (2006). Optimizing the hyper-parameters for SVM by combining evolution strategies with a grid search. Intelligent Control and Automation, 344, 485.
Paper not yet in RePEc: Add citation now
- Mahouti, P., Gunes, F., Belen, M. A., & Demirel, S. (2021). Symbolic regression for derivation of an accurate analytical formulation using “big data’’: An application example. The Applied Computational Electromagnetics Society Journal, 32(5), 372–380.
Paper not yet in RePEc: Add citation now
Masini, R. P., Medeiros, M. C., & Mendes, E. F. (2021). Machine learning advances for time series forecasting. Journal of Economic Surveys, 52, 354.
Medeiros, M. C., Vasconcelos, G. F., Veiga, Á., & Zilberman, E. (2021). Forecasting inflation in a data-rich environment: The benefits of machine learning methods. Journal of Business and Economic Statistics, 39(1), 98–119.
- Natan, S., Lazebnik, T., & Lerner, E. (2022). A distinction of three online learning pedagogic paradigms. SN Social Sciences, 2, 46.
Paper not yet in RePEc: Add citation now
Nosratabadi, S., Mosavi, A., Duan, P., Ghamisi, P., Filip, F., Band, S. S., Reuter, U., Gama, J., & Gandomi, A. (2020). Data science in economics: Comprehensive review of advanced machine learning and deep learning methods. Mathematics, 8, 1799.
- Ozmen, A., Kropat, E., & Weber, G.-W. (2016). Robust optimization in spline regression models for multi-model regulatory networks under polyhedral uncertainty. Optimization, 12, 2135–2155.
Paper not yet in RePEc: Add citation now
- Paruchuri, H. (2021). Conceptualization of machine learning in economic forecasting. Asian Business Review, 11(2), 51–58.
Paper not yet in RePEc: Add citation now
Rogoff, K. (2015). Costs and benefits to phasing out paper currency. NBER Macroeconomics Annual, 29(1), 445–456.
- Rokach, L. (2016). Decision forest: Twenty years of research. Information Fusion, 27, 111–125.
Paper not yet in RePEc: Add citation now
- Savchenko, E., & Lazebnik, T. (2022). Computer aided functional style identification and correction in modern Russian texts. Journal of Data, Information and Management, 4, 25–32.
Paper not yet in RePEc: Add citation now
- Savku, E. (2023). A stochastic control approach for constrained stochastic differential games with jumps and regimes. arXiv.
Paper not yet in RePEc: Add citation now
Schneider, F., & Buehn, A. (2016). Estimating the size of the shadow economy: Methods, problems and open questions. Institute for the Study of Labor (IZA).
- Schneider, F., & Buehn, A. (2018). Shadow economy: Estimation methods, problems, results and open questions. Open Economics, 1(1), 1–29.
Paper not yet in RePEc: Add citation now
Schneider, F., & Enste, D. H. (2000). Shadow economies: Size, causes, and consequences. Journal of Economic Literature, 38(1), 77–114.
Schneider, F., Buehn, A., & Montenegro, C. E. (2010). New estimates for the shadow economies all over the world. International Economic Journal, 24(4), 443–461.
Shami, L. (2019). Dynamic monetary equilibrium with a non-observed economy and Shapley and Shubik’s price mechanism. Journal of Macroeconomics, 62, 103018.
- Shami, L. (2020). The non-observed economy in Israel. Taub Center for Social Policy Studies in Israel.
Paper not yet in RePEc: Add citation now
- Shami, L., G. Cohen, O. Akirav, A. Herscovici, L. Yehuda, and S. Barel-Shaked (2021). Informal self-employment within the non-observed economy of Israel. Furthcoming in: International Journal of Entrepreneurship and Small Business.
Paper not yet in RePEc: Add citation now
- Simon Keren, L., Liberzon, A., & Lazebnik, T. (2023). A computational framework for physics-informed symbolic regression with straightforward integration of domain knowledge. Scientific Reports, 13, 1249.
Paper not yet in RePEc: Add citation now
- Stijven, S., Vladislavleva, E., Kordon, A., Willem, L., & Kotanchek, M. E. (2016). Prime-time: Symbolic regression takes its place in the real world. Genetic and Evolutionary Computation: Genetic Programming Theory and Practice XIII.
Paper not yet in RePEc: Add citation now
- Thai, M. T. T., & Turkina, E. (2013). Entrepreneurship in the informal economy: Models, approaches and prospects for economic development. Routledge.
Paper not yet in RePEc: Add citation now
- Udrescu, S.-M., & Tegmark, M. (2020). AI Feynman: A physics-inspired method for symbolic regression. Science Advances, 6(16), eaay2631.
Paper not yet in RePEc: Add citation now
Weber, G.-W., Defterli, O., Gok, S. Z. A., & Kropat, E. (2011). Modeling, inference and optimization of regulatory networks based on time series data. European Journal of Operational Research, 211(1), 1–14.
- Weck, H. (1983). Schattenwirtschaft: Eine Möglichkeit zur Einschränkung der öffentlichen Verwaltung? eine ökonomische Analyse. Frankfurt/Main: Lang.
Paper not yet in RePEc: Add citation now
Yoon, J. (2021). Forecasting of real GDP growth using machine learning models: Gradient boosting and random forest approach. Computational Economics, 57, 247–265.