- Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., et al. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv Preprint arXiv:1603.04467 .
Paper not yet in RePEc: Add citation now
- Alexiades, V., & Cannon, J. R. (1980). Free boundary problems in solidification of alloys. SIAM Journal on Mathematical Analysis, 11(2), 254–264.
Paper not yet in RePEc: Add citation now
Anderson, D. & Ulrych, U. (2022). Accelerated American option pricing with deep neural networks. Swiss Finance Institute Research Paper, (22-03).
- Andreucci, D., & Gianni, R. (1994). Classical solutions to a multidimensional free boundary problem arising in combustion theory. Communications in Partial Differential Equations, 19(5–6), 803–826.
Paper not yet in RePEc: Add citation now
- Ballestra, L. V. (2018). Fast and accurate calculation of American option prices. Decisions in Economics and Finance, 41(2), 399–426.
Paper not yet in RePEc: Add citation now
- Bänsch, E., Paul, J., & Schmidt, A. (2013). An ALE finite element method for a coupled Stefan problem and Navier–Stokes equations with free capillary surface. International Journal for Numerical Methods in Fluids, 71(10), 1282–1296.
Paper not yet in RePEc: Add citation now
Barles, G., & Soner, H. M. (1998). Option pricing with transaction costs and a nonlinear Black–Scholes equation. Finance & Stochastics, 2(4), 369–397.
Becker, S., Cheridito, P., & Jentzen, A. (2020). Pricing and hedging American-style options with deep learning. Journal of Risk and Financial Management, 13(7), 158.
Brennan, M. J., & Schwartz, E. S. (1977). The valuation of American put options. The Journal of Finance, 32(2), 449–462.
Bunch, D. S., & Johnson, H. (2000). The American put option and its critical stock price. The Journal of Finance, 55(5), 2333–2356.
- Caffarelli, L. A., & Vázquez, J. L. (1995). A free-boundary problem for the heat equation arising in flame propagation. Transactions of the American Mathematical Society, 347(2), 411–441.
Paper not yet in RePEc: Add citation now
Carr, P. (1998). Randomization and the American put. The Review of Financial Studies, 11(3), 597–626.
- Ceseri, M., & Stockie, J. M. (2014). A three-phase free boundary problem with melting ice and dissolving gas. European Journal of Applied Mathematics, 25(4), 449–480.
Paper not yet in RePEc: Add citation now
- Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu, S., Agarwal, D., & Di Giovanni, M. (2020). NeuroDiffEq: A python package for solving differential equations with neural networks. Journal of Open Source Software, 5(46), 1931.
Paper not yet in RePEc: Add citation now
- Chen, X., Cheng, H., & Chadam, J. (2013). Nonconvexity of the optimal exercise boundary for an American put option on a dividend-paying asset. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 23(1), 169–185.
Paper not yet in RePEc: Add citation now
Chen, Y., & Wan, J. W. (2021). Deep neural network framework based on backward stochastic differential equations for pricing and hedging American options in high dimensions. Quantitative Finance, 21(1), 45–67.
Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229–263.
- Deng, L., Yu, D., et al. (2014). Deep learning: methods and applications. Foundations and Trends® in Signal Processing, 7(3–4), 197–387.
Paper not yet in RePEc: Add citation now
- Detemple, J. (2001). American options: Symmetry properties. Option Pricing, Interest Rates and Risk Management, 67–104.
Paper not yet in RePEc: Add citation now
- Dolezel, P., Skrabanek, P., & Gago, L. (2016). Weight initialization possibilities for feedforward neural network with linear saturated activation functions. IFAC-PapersOnLine, 49(25), 49–54.
Paper not yet in RePEc: Add citation now
- Dutta, S., & Shekhar, S. (1988). Bond rating: A non-conservative application of neural networks. In IEEE International Conference on Neural Networks (pp. 443–450). Publ by IEEE.
Paper not yet in RePEc: Add citation now
- Egorova, V. N., Tan, S.-H., Lai, C.-H., Company, R., & Jódar, L. (2017). Moving boundary transformation for American call options with transaction cost: Finite difference methods and computing. International Journal of Computer Mathematics, 94(2), 345–362.
Paper not yet in RePEc: Add citation now
- Egorova, V., Jódar, L., et al. (2014). Solving American option pricing models by the front fixing method: Numerical analysis and computing. Abstract and Applied Analysis, 2014, 146745.
Paper not yet in RePEc: Add citation now
Eskiizmirliler, S., Günel, K., & Polat, R. (2021). On the solution of the Black–Scholes equation using feed-forward neural networks. Computational Economics, 58(3), 915–941.
- Fazio, R., Insana, A., & Jannelli, A. (2021). A front-fixing implicit finite difference method for the American put options model. Mathematical and Computational Applications, 26(2), 30.
Paper not yet in RePEc: Add citation now
- Filippi, J.-B., Morandini, F., Balbi, J. H., & Hill, D. R. (2010). Discrete event front-tracking simulation of a physical fire-spread model. Simulation, 86(10), 629–646.
Paper not yet in RePEc: Add citation now
- Frankel, M. L., & Roytburd, V. (1994). A free boundary problem modeling thermal instabilities: Stability and bifurcation. Journal of Dynamics and Differential Equations, 6(3), 447–486.
Paper not yet in RePEc: Add citation now
- Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 249–256). JMLR Workshop and Conference Proceedings.
Paper not yet in RePEc: Add citation now
- Golbabai, A., & Seifollahi, S. (2006). Numerical solution of the second kind integral equations using radial basis function networks. Applied Mathematics and Computation, 174(2), 877–883.
Paper not yet in RePEc: Add citation now
- Gutiérrez, Ó. (2013). American option valuation using first-passage densities. Quantitative Finance, 13(11), 1831–1843.
Paper not yet in RePEc: Add citation now
- He, J., & Xu, J. (2019). MgNet: A unified framework of multigrid and convolutional neural network. Science China Mathematics, 62(7), 1331–1354.
Paper not yet in RePEc: Add citation now
- He, S., Reif, K., & Unbehauen, R. (2000). Multilayer neural networks for solving a class of partial differential equations. Neural Networks, 13(3), 385–396.
Paper not yet in RePEc: Add citation now
Hirsa, A., Karatas, T., & Oskoui, A. (2019). Supervised deep neural networks (DNNs) for pricing/calibration of vanilla/exotic options under various different processes. arXiv Preprint arXiv:1902.05810 .
- Hou, M., Fu, H., Hu, Z., Wang, J., Chen, Y., & Yang, Y. (2022). Numerical solving of generalized Black–Scholes differential equation using deep learning based on blocked residual connection. Digital Signal Processing, 126, 103498.
Paper not yet in RePEc: Add citation now
- Hu, H., & Argyropoulos, S. A. (1996). Mathematical modelling of solidification and melting: a review. Modelling and Simulation in Materials Science and Engineering, 4(4), 371.
Paper not yet in RePEc: Add citation now
- Hussian, E. A., & Suhhiem, M. H. (2015). Numerical solution of partial differential equations by using modified artificial neural network. Network and Complex Systems, 5(6), 11–21.
Paper not yet in RePEc: Add citation now
Hutchinson, J. M., Lo, A. W., & Poggio, T. (1994). A nonparametric approach to pricing and hedging derivative securities via learning networks. The Journal of Finance, 49(3), 851–889.
- Jandačka, M., & Ševčovič, D. (2005). On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile. Journal of Applied Mathematics, 2005(3), 235–258.
Paper not yet in RePEc: Add citation now
- Jianyu, L., Siwei, L., Yingjian, Q., & Yaping, H. (2003). Numerical solution of elliptic partial differential equation using radial basis function neural networks. Neural Networks, 16(5–6), 729–734.
Paper not yet in RePEc: Add citation now
- Khashman, A. (2010). Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes. Expert Systems with Applications, 37(9), 6233–6239.
Paper not yet in RePEc: Add citation now
- Khoo, Y., Lu, J., & Ying, L. (2021). Solving parametric PDE problems with artificial neural networks. European Journal of Applied Mathematics, 32(3), 421–435.
Paper not yet in RePEc: Add citation now
- Kim, I. C. (2003). A free boundary problem arising in flame propagation. Journal of Differential Equations, 191(2), 470–489.
Paper not yet in RePEc: Add citation now
- Kingma Diederik, P., & Adam, J. B. (2014). A method for stochastic optimization. arXiv Preprint arXiv:1412.6980 .
Paper not yet in RePEc: Add citation now
- Kumar, V., Durst, F., & Ray, S. (2006). Modeling moving-boundary problems of solidification and melting adopting an arbitrary Lagrangian–Eulerian approach. Numerical Heat Transfer, Part B: Fundamentals, 49(4), 299–331.
Paper not yet in RePEc: Add citation now
- Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9(5), 987–1000.
Paper not yet in RePEc: Add citation now
Leland, H. E. (1985). Option pricing and replication with transactions costs. The Journal of Finance, 40(5), 1283–1301.
Létourneau, P., & Stentoft, L. (2019). Bootstrapping the early exercise boundary in the least-squares Monte Carlo method. Journal of Risk and Financial Management, 12(4), 190.
- Lin, J., & Almeida, C. (2021). American option pricing with machine learning: An extension of the Longstaff–Schwartz method. Brazilian Review of Finance, 19(3), 85–109.
Paper not yet in RePEc: Add citation now
- Liu, H., & Markowich, P. (2020). Selection dynamics for deep neural networks. Journal of Differential Equations, 269(12), 11540–11574.
Paper not yet in RePEc: Add citation now
- Liu, S., Du, Y., & Liu, X. (2020). Numerical studies of a class of reaction-diffusion equations with Stefan conditions. International Journal of Computer Mathematics, 97(5), 959–979.
Paper not yet in RePEc: Add citation now
- Liu, Z., Yang, Y., & Cai, Q.-D. (2019). Solving differential equation with constrained multilayer feedforward network. arXiv Preprint arXiv:1904.06619 .
Paper not yet in RePEc: Add citation now
Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation: A simple least-squares approach. The Review of Financial Studies, 14(1), 113–147.
- Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021). DeepXDE: A deep learning library for solving differential equations. SIAM Review, 63(1), 208–228.
Paper not yet in RePEc: Add citation now
- MacKean, H., Jr. (1965). A free boundary problem for the heat equation arising from a problem in mathematical economics. Industrial Management Review, 6, 32–39.
Paper not yet in RePEc: Add citation now
- Malliaris, M., & Salchenberger, L. (1993). A neural network model for estimating option prices. Applied Intelligence, 3(3), 193–206.
Paper not yet in RePEc: Add citation now
- Musiela, M., & Rutkowski, M. (2006). Martingale methods in financial modelling (Vol. 36). Springer Science & Business Media.
Paper not yet in RePEc: Add citation now
- Narkhede, M. V., Bartakke, P. P., & Sutaone, M. S. (2022). A review on weight initialization strategies for neural networks. Artificial Intelligence Review, 55(1), 291–322.
Paper not yet in RePEc: Add citation now
- Nielsen, B. F., Skavhaug, O., & Tveito, A. (2002). Penalty and front-fixing methods for the numerical solution of American option problems. Journal of Computational Finance, 5(4), 69–98.
Paper not yet in RePEc: Add citation now
Nwankwo, C., & Dai, W. (2022). On the efficiency of 5(4) RK-embedded pairs with high order compact scheme and Robin boundary condition for options valuation. Japan Journal of Industrial and Applied Mathematics, 39(2), 753–775.
Nwankwo, C., & Dai, W. (2022). Sixth-order compact differencing with staggered boundary schemes and 3(2) Bogacki–Shampine pairs for pricing free-boundary options. arXiv Preprint arXiv:2207.14379 .
- Pacelli, V., Azzollini, M., et al. (2011). An artificial neural network approach for credit risk management. Journal of Intelligent Learning Systems and Applications, 3(02), 103.
Paper not yet in RePEc: Add citation now
- Piqueras, M.-A., Company, R., & Jódar, L. (2017). A front-fixing numerical method for a free boundary nonlinear diffusion logistic population model. Journal of Computational and Applied Mathematics, 309, 473–481.
Paper not yet in RePEc: Add citation now
- Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv Preprint arXiv:1711.10561 .
Paper not yet in RePEc: Add citation now
- Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378, 686–707.
Paper not yet in RePEc: Add citation now
- Reppen, A. M., Soner, H. M., & Tissot-Daguette, V. (2022). Neural optimal stopping boundary. arXiv Preprint arXiv:2205.04595 .
Paper not yet in RePEc: Add citation now
Sabate-Vidales, M., Šiška, D., & Szpruch, L. (2020). Solving path dependent PDEs with LSTM networks and path signatures. arXiv Preprint arXiv:2011.10630 .
- Schmeiser, C. (2020). Free boundaries in semiconductor devices. In J. M. Chadam & H. Rasmussen (Eds.), Emerging applications in free boundary problems (pp. 268–272). Chapman and Hall/CRC.
Paper not yet in RePEc: Add citation now
Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of Computational Physics, 375, 1339–1364.
- Umeorah, N., & Mba, J. C. (2022). Approximation of single-barrier options partial differential equations using feed-forward neural network. Applied Stochastic Models in Business and Industry, 38(6), 1079–1098.
Paper not yet in RePEc: Add citation now
- van Moerbeke, P. (1974). Optimal stopping and free boundary problems. The Rocky Mountain Journal of Mathematics, 4(3), 539–578.
Paper not yet in RePEc: Add citation now
Villani, G. (2022). A neural network approach to value R &D compound American exchange option. Computational Economics, 60(1), 305–324.
- Wang, S., & Perdikaris, P. (2021). Deep learning of free boundary and Stefan problems. Journal of Computational Physics, 428, 109914.
Paper not yet in RePEc: Add citation now
Wilmott, P., Howison, S., & Dewynne, J. (1995). The mathematics of financial derivatives. Cambridge University Press.
- Wu, C., Zhu, M., Tan, Q., Kartha, Y., & Lu, L. (2023). A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 403, 115671.
Paper not yet in RePEc: Add citation now
- Wu, L., & Kwok, Y.-K. (1997). A front-fixing finite difference method for the valuation of American options. Journal of Financial Engineering, 6(4), 83–97.
Paper not yet in RePEc: Add citation now
- Zhao, X. E., Hao, W., & Hu, B. (2021). Convergence analysis of neural networks for solving a free boundary problem. Computers & Mathematics with Applications, 93, 144–155.
Paper not yet in RePEc: Add citation now
- Zhu, S.-P., & Chen, W.-T. (2011). A predictor-corrector scheme based on the ADI method for pricing American puts with stochastic volatility. Computers & Mathematics with Applications, 62(1), 1–26.
Paper not yet in RePEc: Add citation now