create a website

Deep Learning and American Options via Free Boundary Framework. (2024). Dai, Weizhong ; Ware, Tony ; Umeorah, Nneka ; Nwankwo, Chinonso.
In: Computational Economics.
RePEc:kap:compec:v:64:y:2024:i:2:d:10.1007_s10614-023-10459-3.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 77

References cited by this document

Cocites: 55

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., et al. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv Preprint arXiv:1603.04467 .
    Paper not yet in RePEc: Add citation now
  2. Alexiades, V., & Cannon, J. R. (1980). Free boundary problems in solidification of alloys. SIAM Journal on Mathematical Analysis, 11(2), 254–264.
    Paper not yet in RePEc: Add citation now
  3. Anderson, D. & Ulrych, U. (2022). Accelerated American option pricing with deep neural networks. Swiss Finance Institute Research Paper, (22-03).

  4. Andreucci, D., & Gianni, R. (1994). Classical solutions to a multidimensional free boundary problem arising in combustion theory. Communications in Partial Differential Equations, 19(5–6), 803–826.
    Paper not yet in RePEc: Add citation now
  5. Ballestra, L. V. (2018). Fast and accurate calculation of American option prices. Decisions in Economics and Finance, 41(2), 399–426.
    Paper not yet in RePEc: Add citation now
  6. Bänsch, E., Paul, J., & Schmidt, A. (2013). An ALE finite element method for a coupled Stefan problem and Navier–Stokes equations with free capillary surface. International Journal for Numerical Methods in Fluids, 71(10), 1282–1296.
    Paper not yet in RePEc: Add citation now
  7. Barles, G., & Soner, H. M. (1998). Option pricing with transaction costs and a nonlinear Black–Scholes equation. Finance & Stochastics, 2(4), 369–397.

  8. Becker, S., Cheridito, P., & Jentzen, A. (2020). Pricing and hedging American-style options with deep learning. Journal of Risk and Financial Management, 13(7), 158.

  9. Brennan, M. J., & Schwartz, E. S. (1977). The valuation of American put options. The Journal of Finance, 32(2), 449–462.

  10. Bunch, D. S., & Johnson, H. (2000). The American put option and its critical stock price. The Journal of Finance, 55(5), 2333–2356.

  11. Caffarelli, L. A., & Vázquez, J. L. (1995). A free-boundary problem for the heat equation arising in flame propagation. Transactions of the American Mathematical Society, 347(2), 411–441.
    Paper not yet in RePEc: Add citation now
  12. Carr, P. (1998). Randomization and the American put. The Review of Financial Studies, 11(3), 597–626.

  13. Ceseri, M., & Stockie, J. M. (2014). A three-phase free boundary problem with melting ice and dissolving gas. European Journal of Applied Mathematics, 25(4), 449–480.
    Paper not yet in RePEc: Add citation now
  14. Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu, S., Agarwal, D., & Di Giovanni, M. (2020). NeuroDiffEq: A python package for solving differential equations with neural networks. Journal of Open Source Software, 5(46), 1931.
    Paper not yet in RePEc: Add citation now
  15. Chen, X., Cheng, H., & Chadam, J. (2013). Nonconvexity of the optimal exercise boundary for an American put option on a dividend-paying asset. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 23(1), 169–185.
    Paper not yet in RePEc: Add citation now
  16. Chen, Y., & Wan, J. W. (2021). Deep neural network framework based on backward stochastic differential equations for pricing and hedging American options in high dimensions. Quantitative Finance, 21(1), 45–67.

  17. Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229–263.

  18. Deng, L., Yu, D., et al. (2014). Deep learning: methods and applications. Foundations and Trends® in Signal Processing, 7(3–4), 197–387.
    Paper not yet in RePEc: Add citation now
  19. Detemple, J. (2001). American options: Symmetry properties. Option Pricing, Interest Rates and Risk Management, 67–104.
    Paper not yet in RePEc: Add citation now
  20. Dolezel, P., Skrabanek, P., & Gago, L. (2016). Weight initialization possibilities for feedforward neural network with linear saturated activation functions. IFAC-PapersOnLine, 49(25), 49–54.
    Paper not yet in RePEc: Add citation now
  21. Dutta, S., & Shekhar, S. (1988). Bond rating: A non-conservative application of neural networks. In IEEE International Conference on Neural Networks (pp. 443–450). Publ by IEEE.
    Paper not yet in RePEc: Add citation now
  22. Egorova, V. N., Tan, S.-H., Lai, C.-H., Company, R., & Jódar, L. (2017). Moving boundary transformation for American call options with transaction cost: Finite difference methods and computing. International Journal of Computer Mathematics, 94(2), 345–362.
    Paper not yet in RePEc: Add citation now
  23. Egorova, V., Jódar, L., et al. (2014). Solving American option pricing models by the front fixing method: Numerical analysis and computing. Abstract and Applied Analysis, 2014, 146745.
    Paper not yet in RePEc: Add citation now
  24. Eskiizmirliler, S., Günel, K., & Polat, R. (2021). On the solution of the Black–Scholes equation using feed-forward neural networks. Computational Economics, 58(3), 915–941.

  25. Fazio, R., Insana, A., & Jannelli, A. (2021). A front-fixing implicit finite difference method for the American put options model. Mathematical and Computational Applications, 26(2), 30.
    Paper not yet in RePEc: Add citation now
  26. Filippi, J.-B., Morandini, F., Balbi, J. H., & Hill, D. R. (2010). Discrete event front-tracking simulation of a physical fire-spread model. Simulation, 86(10), 629–646.
    Paper not yet in RePEc: Add citation now
  27. Frankel, M. L., & Roytburd, V. (1994). A free boundary problem modeling thermal instabilities: Stability and bifurcation. Journal of Dynamics and Differential Equations, 6(3), 447–486.
    Paper not yet in RePEc: Add citation now
  28. Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 249–256). JMLR Workshop and Conference Proceedings.
    Paper not yet in RePEc: Add citation now
  29. Golbabai, A., & Seifollahi, S. (2006). Numerical solution of the second kind integral equations using radial basis function networks. Applied Mathematics and Computation, 174(2), 877–883.
    Paper not yet in RePEc: Add citation now
  30. Gutiérrez, Ó. (2013). American option valuation using first-passage densities. Quantitative Finance, 13(11), 1831–1843.
    Paper not yet in RePEc: Add citation now
  31. He, J., & Xu, J. (2019). MgNet: A unified framework of multigrid and convolutional neural network. Science China Mathematics, 62(7), 1331–1354.
    Paper not yet in RePEc: Add citation now
  32. He, S., Reif, K., & Unbehauen, R. (2000). Multilayer neural networks for solving a class of partial differential equations. Neural Networks, 13(3), 385–396.
    Paper not yet in RePEc: Add citation now
  33. Hirsa, A., Karatas, T., & Oskoui, A. (2019). Supervised deep neural networks (DNNs) for pricing/calibration of vanilla/exotic options under various different processes. arXiv Preprint arXiv:1902.05810 .

  34. Hou, M., Fu, H., Hu, Z., Wang, J., Chen, Y., & Yang, Y. (2022). Numerical solving of generalized Black–Scholes differential equation using deep learning based on blocked residual connection. Digital Signal Processing, 126, 103498.
    Paper not yet in RePEc: Add citation now
  35. Hu, H., & Argyropoulos, S. A. (1996). Mathematical modelling of solidification and melting: a review. Modelling and Simulation in Materials Science and Engineering, 4(4), 371.
    Paper not yet in RePEc: Add citation now
  36. Hussian, E. A., & Suhhiem, M. H. (2015). Numerical solution of partial differential equations by using modified artificial neural network. Network and Complex Systems, 5(6), 11–21.
    Paper not yet in RePEc: Add citation now
  37. Hutchinson, J. M., Lo, A. W., & Poggio, T. (1994). A nonparametric approach to pricing and hedging derivative securities via learning networks. The Journal of Finance, 49(3), 851–889.

  38. Jandačka, M., & Ševčovič, D. (2005). On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile. Journal of Applied Mathematics, 2005(3), 235–258.
    Paper not yet in RePEc: Add citation now
  39. Jianyu, L., Siwei, L., Yingjian, Q., & Yaping, H. (2003). Numerical solution of elliptic partial differential equation using radial basis function neural networks. Neural Networks, 16(5–6), 729–734.
    Paper not yet in RePEc: Add citation now
  40. Khashman, A. (2010). Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes. Expert Systems with Applications, 37(9), 6233–6239.
    Paper not yet in RePEc: Add citation now
  41. Khoo, Y., Lu, J., & Ying, L. (2021). Solving parametric PDE problems with artificial neural networks. European Journal of Applied Mathematics, 32(3), 421–435.
    Paper not yet in RePEc: Add citation now
  42. Kim, I. C. (2003). A free boundary problem arising in flame propagation. Journal of Differential Equations, 191(2), 470–489.
    Paper not yet in RePEc: Add citation now
  43. Kingma Diederik, P., & Adam, J. B. (2014). A method for stochastic optimization. arXiv Preprint arXiv:1412.6980 .
    Paper not yet in RePEc: Add citation now
  44. Kumar, V., Durst, F., & Ray, S. (2006). Modeling moving-boundary problems of solidification and melting adopting an arbitrary Lagrangian–Eulerian approach. Numerical Heat Transfer, Part B: Fundamentals, 49(4), 299–331.
    Paper not yet in RePEc: Add citation now
  45. Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9(5), 987–1000.
    Paper not yet in RePEc: Add citation now
  46. Leland, H. E. (1985). Option pricing and replication with transactions costs. The Journal of Finance, 40(5), 1283–1301.

  47. Létourneau, P., & Stentoft, L. (2019). Bootstrapping the early exercise boundary in the least-squares Monte Carlo method. Journal of Risk and Financial Management, 12(4), 190.

  48. Lin, J., & Almeida, C. (2021). American option pricing with machine learning: An extension of the Longstaff–Schwartz method. Brazilian Review of Finance, 19(3), 85–109.
    Paper not yet in RePEc: Add citation now
  49. Liu, H., & Markowich, P. (2020). Selection dynamics for deep neural networks. Journal of Differential Equations, 269(12), 11540–11574.
    Paper not yet in RePEc: Add citation now
  50. Liu, S., Du, Y., & Liu, X. (2020). Numerical studies of a class of reaction-diffusion equations with Stefan conditions. International Journal of Computer Mathematics, 97(5), 959–979.
    Paper not yet in RePEc: Add citation now
  51. Liu, Z., Yang, Y., & Cai, Q.-D. (2019). Solving differential equation with constrained multilayer feedforward network. arXiv Preprint arXiv:1904.06619 .
    Paper not yet in RePEc: Add citation now
  52. Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation: A simple least-squares approach. The Review of Financial Studies, 14(1), 113–147.

  53. Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021). DeepXDE: A deep learning library for solving differential equations. SIAM Review, 63(1), 208–228.
    Paper not yet in RePEc: Add citation now
  54. MacKean, H., Jr. (1965). A free boundary problem for the heat equation arising from a problem in mathematical economics. Industrial Management Review, 6, 32–39.
    Paper not yet in RePEc: Add citation now
  55. Malliaris, M., & Salchenberger, L. (1993). A neural network model for estimating option prices. Applied Intelligence, 3(3), 193–206.
    Paper not yet in RePEc: Add citation now
  56. Musiela, M., & Rutkowski, M. (2006). Martingale methods in financial modelling (Vol. 36). Springer Science & Business Media.
    Paper not yet in RePEc: Add citation now
  57. Narkhede, M. V., Bartakke, P. P., & Sutaone, M. S. (2022). A review on weight initialization strategies for neural networks. Artificial Intelligence Review, 55(1), 291–322.
    Paper not yet in RePEc: Add citation now
  58. Nielsen, B. F., Skavhaug, O., & Tveito, A. (2002). Penalty and front-fixing methods for the numerical solution of American option problems. Journal of Computational Finance, 5(4), 69–98.
    Paper not yet in RePEc: Add citation now
  59. Nwankwo, C., & Dai, W. (2022). On the efficiency of 5(4) RK-embedded pairs with high order compact scheme and Robin boundary condition for options valuation. Japan Journal of Industrial and Applied Mathematics, 39(2), 753–775.

  60. Nwankwo, C., & Dai, W. (2022). Sixth-order compact differencing with staggered boundary schemes and 3(2) Bogacki–Shampine pairs for pricing free-boundary options. arXiv Preprint arXiv:2207.14379 .

  61. Pacelli, V., Azzollini, M., et al. (2011). An artificial neural network approach for credit risk management. Journal of Intelligent Learning Systems and Applications, 3(02), 103.
    Paper not yet in RePEc: Add citation now
  62. Piqueras, M.-A., Company, R., & Jódar, L. (2017). A front-fixing numerical method for a free boundary nonlinear diffusion logistic population model. Journal of Computational and Applied Mathematics, 309, 473–481.
    Paper not yet in RePEc: Add citation now
  63. Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv Preprint arXiv:1711.10561 .
    Paper not yet in RePEc: Add citation now
  64. Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378, 686–707.
    Paper not yet in RePEc: Add citation now
  65. Reppen, A. M., Soner, H. M., & Tissot-Daguette, V. (2022). Neural optimal stopping boundary. arXiv Preprint arXiv:2205.04595 .
    Paper not yet in RePEc: Add citation now
  66. Sabate-Vidales, M., Šiška, D., & Szpruch, L. (2020). Solving path dependent PDEs with LSTM networks and path signatures. arXiv Preprint arXiv:2011.10630 .

  67. Schmeiser, C. (2020). Free boundaries in semiconductor devices. In J. M. Chadam & H. Rasmussen (Eds.), Emerging applications in free boundary problems (pp. 268–272). Chapman and Hall/CRC.
    Paper not yet in RePEc: Add citation now
  68. Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of Computational Physics, 375, 1339–1364.

  69. Umeorah, N., & Mba, J. C. (2022). Approximation of single-barrier options partial differential equations using feed-forward neural network. Applied Stochastic Models in Business and Industry, 38(6), 1079–1098.
    Paper not yet in RePEc: Add citation now
  70. van Moerbeke, P. (1974). Optimal stopping and free boundary problems. The Rocky Mountain Journal of Mathematics, 4(3), 539–578.
    Paper not yet in RePEc: Add citation now
  71. Villani, G. (2022). A neural network approach to value R &D compound American exchange option. Computational Economics, 60(1), 305–324.

  72. Wang, S., & Perdikaris, P. (2021). Deep learning of free boundary and Stefan problems. Journal of Computational Physics, 428, 109914.
    Paper not yet in RePEc: Add citation now
  73. Wilmott, P., Howison, S., & Dewynne, J. (1995). The mathematics of financial derivatives. Cambridge University Press.

  74. Wu, C., Zhu, M., Tan, Q., Kartha, Y., & Lu, L. (2023). A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 403, 115671.
    Paper not yet in RePEc: Add citation now
  75. Wu, L., & Kwok, Y.-K. (1997). A front-fixing finite difference method for the valuation of American options. Journal of Financial Engineering, 6(4), 83–97.
    Paper not yet in RePEc: Add citation now
  76. Zhao, X. E., Hao, W., & Hu, B. (2021). Convergence analysis of neural networks for solving a free boundary problem. Computers & Mathematics with Applications, 93, 144–155.
    Paper not yet in RePEc: Add citation now
  77. Zhu, S.-P., & Chen, W.-T. (2011). A predictor-corrector scheme based on the ADI method for pricing American puts with stochastic volatility. Computers & Mathematics with Applications, 62(1), 1–26.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Deep Learning and American Options via Free Boundary Framework. (2024). Dai, Weizhong ; Ware, Tony ; Umeorah, Nneka ; Nwankwo, Chinonso.
    In: Computational Economics.
    RePEc:kap:compec:v:64:y:2024:i:2:d:10.1007_s10614-023-10459-3.

    Full description at Econpapers || Download paper

  2. Option Pricing Based on the Residual Neural Network. (2024). Liu, Wei-Han ; Gan, Lirong.
    In: Computational Economics.
    RePEc:kap:compec:v:63:y:2024:i:4:d:10.1007_s10614-023-10413-3.

    Full description at Econpapers || Download paper

  3. American Option Pricing using Self-Attention GRU and Shapley Value Interpretation. (2023). Shen, Yanhui.
    In: Papers.
    RePEc:arx:papers:2310.12500.

    Full description at Econpapers || Download paper

  4. Deep learning and American options via free boundary framework. (2022). Dai, Weizhong ; Ware, Tony ; Umeorah, Nneka ; Nwankwo, Chinonso.
    In: Papers.
    RePEc:arx:papers:2211.11803.

    Full description at Econpapers || Download paper

  5. Robust numerical algorithm to the European option with illiquid markets. (2020). Ivaz, K ; Rouz, Farkhondeh O ; Ahmadian, D ; Safdari-Vaighani, A.
    In: Applied Mathematics and Computation.
    RePEc:eee:apmaco:v:366:y:2020:i:c:s009630031930685x.

    Full description at Econpapers || Download paper

  6. A Finite Element Approach to the Numerical Solutions of Lelands Mode. (2020). Erlangga, Yogi Ahmad ; Zhumakhanova, Gulzat ; Wei, Dongming.
    In: Papers.
    RePEc:arx:papers:2010.13541.

    Full description at Econpapers || Download paper

  7. Recipes for hedging exotics with illiquid vanillas. (2020). Gu, Olivier ; Fernandez-Tapia, Joaquin.
    In: Papers.
    RePEc:arx:papers:2005.10064.

    Full description at Econpapers || Download paper

  8. An Efficient Algorithm for Options Under Merton’s Jump-Diffusion Model on Nonuniform Grids. (2019). Chen, Yingzi ; Wang, Wansheng ; Xiao, Aiguo.
    In: Computational Economics.
    RePEc:kap:compec:v:53:y:2019:i:4:d:10.1007_s10614-018-9823-8.

    Full description at Econpapers || Download paper

  9. A computational method to price with transaction costs under the nonlinear Black–Scholes model. (2019). al Zhour, Zeyad ; Barfeie, Mahdiar ; Soleymani, Fazlollah ; Tohidi, Emran.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:127:y:2019:i:c:p:291-301.

    Full description at Econpapers || Download paper

  10. Option pricing in exponential L\evy models with transaction costs. (2019). Grossinho, Maria ; Cantarutti, Nicola ; Do, Maria ; Guerra, Manuel.
    In: Papers.
    RePEc:arx:papers:1611.00389.

    Full description at Econpapers || Download paper

  11. Pricing American Call Options by the Black-Scholes Equation with a Nonlinear Volatility Function. (2018). Grossinho, Maria ; Kord, Yaser Faghan ; Sevcovic, Daniel.
    In: Papers.
    RePEc:arx:papers:1707.00358.

    Full description at Econpapers || Download paper

  12. Pricing Perpetual Put Options by the Black–Scholes Equation with a Nonlinear Volatility Function. (2017). Faghan, Yaser Kord ; Do, Maria ; Evovi, Daniel.
    In: Asia-Pacific Financial Markets.
    RePEc:kap:apfinm:v:24:y:2017:i:4:d:10.1007_s10690-017-9234-1.

    Full description at Econpapers || Download paper

  13. Pricing Perpetual Put Options by the Black-Scholes Equation with a Nonlinear Volatility Function. (2017). Kord, Yaser Faghan ; Do, Maria ; Sevcovic, Daniel.
    In: Working Papers REM.
    RePEc:ise:remwps:wp0192017.

    Full description at Econpapers || Download paper

  14. Pricing American Call Option by the Black-Scholes Equation with a Nonlinear Volatility Function. (2017). Kord, Yaser Faghan ; Do, Maria ; Sevcovic, Daniel.
    In: Working Papers REM.
    RePEc:ise:remwps:wp0182017.

    Full description at Econpapers || Download paper

  15. Discrete-time option pricing with stochastic liquidity. (2017). Leippold, Markus ; Scharer, Steven .
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:75:y:2017:i:c:p:1-16.

    Full description at Econpapers || Download paper

  16. Nonlinear Parabolic Equations arising in Mathematical Finance. (2017). Sevcovic, Daniel.
    In: Papers.
    RePEc:arx:papers:1707.01436.

    Full description at Econpapers || Download paper

  17. Analytical and numerical results for American style of perpetual put options through transformation into nonlinear stationary Black-Scholes equations. (2017). Grossinho, Maria ; Kord, Yaser Faghan ; Sevcovic, Daniel.
    In: Papers.
    RePEc:arx:papers:1707.00356.

    Full description at Econpapers || Download paper

  18. Pricing Perpetual Put Options by the Black-Scholes Equation with a Nonlinear Volatility Function. (2017). Grossinho, Maria ; Faghan, Yaser Kord ; Do, Maria ; Sevcovic, Daniel.
    In: Papers.
    RePEc:arx:papers:1611.00885.

    Full description at Econpapers || Download paper

  19. Hedging in L\evy Models and the Time Step Equivalent of Jumps. (2017). Černý, Aleš ; ÄŒerný, AleÅ¡ ; DENKL, STEPHAN ; Kallsen, Jan ; Cerny, Ales .
    In: Papers.
    RePEc:arx:papers:1309.7833.

    Full description at Econpapers || Download paper

  20. A NOTE ON UTILITY INDIFFERENCE PRICING. (2016). Gerer, Johannes ; Dorfleitner, Gregor.
    In: International Journal of Theoretical and Applied Finance (IJTAF).
    RePEc:wsi:ijtafx:v:19:y:2016:i:06:n:s0219024916500370.

    Full description at Econpapers || Download paper

  21. Minimizing CVaR in global dynamic hedging with transaction costs. (2016). Godin, F.
    In: Quantitative Finance.
    RePEc:taf:quantf:v:16:y:2016:i:3:p:461-475.

    Full description at Econpapers || Download paper

  22. Asymptotic replication with modified volatility under small transaction costs. (2016). Fukasawa, Masaaki ; Cai, Jiatu.
    In: Finance and Stochastics.
    RePEc:spr:finsto:v:20:y:2016:i:2:d:10.1007_s00780-016-0294-2.

    Full description at Econpapers || Download paper

  23. The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making. (2016). Guéant, Olivier ; Gueant, Olivier.
    In: Post-Print.
    RePEc:hal:journl:hal-01393136.

    Full description at Econpapers || Download paper

  24. Hedging under an expected loss constraint with small transaction costs. (2016). Bouchard, Bruno ; Soner, Mete ; Moreau, Ludovic.
    In: Post-Print.
    RePEc:hal:journl:hal-00863562.

    Full description at Econpapers || Download paper

  25. Analysis of the nonlinear option pricing model under variable transaction costs. (2016). Zitnanska, Magdalena ; Sevcovic, Daniel.
    In: Papers.
    RePEc:arx:papers:1603.03874.

    Full description at Econpapers || Download paper

  26. The pricing of contingent claims and optimal positions in asymptotically complete markets. (2016). Anthropelos, Michail ; Robertson, Scott ; Spiliopoulos, Konstantinos.
    In: Papers.
    RePEc:arx:papers:1509.06210.

    Full description at Econpapers || Download paper

  27. Option pricing and hedging with execution costs and market impact. (2015). Guéant, Olivier ; Pu, Jiang ; Gueant, Olivier.
    In: Post-Print.
    RePEc:hal:journl:hal-01393124.

    Full description at Econpapers || Download paper

  28. Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs. (2015). Wang, Song ; Lesmana, Donny Citra.
    In: Applied Mathematics and Computation.
    RePEc:eee:apmaco:v:251:y:2015:i:c:p:318-330.

    Full description at Econpapers || Download paper

  29. Comparison of the analytical approximation formula and Newtons method for solving a class of nonlinear Black-Scholes parabolic equations. (2015). Tan, Shih-Hau ; Duris, Karol ; Sevcovic, Daniel ; Lai, Choi-Hong .
    In: Papers.
    RePEc:arx:papers:1511.05661.

    Full description at Econpapers || Download paper

  30. Option pricing and hedging with execution costs and market impact. (2015). Olivier Gu'eant, ; Pu, Jiang.
    In: Papers.
    RePEc:arx:papers:1311.4342.

    Full description at Econpapers || Download paper

  31. Large liquidity expansion of super-hedging costs. (2015). Touzi, Nizar ; Soner, Mete H. ; Possamai, Dylan.
    In: Papers.
    RePEc:arx:papers:1208.3785.

    Full description at Econpapers || Download paper

  32. Asymptotic replication with modified volatility under small transaction costs. (2014). Fukasawa, Masaaki ; Cai, Jiatu.
    In: Papers.
    RePEc:arx:papers:1408.5677.

    Full description at Econpapers || Download paper

  33. Accelerated Share Repurchase: pricing and execution strategy. (2014). Olivier Gu'eant, ; Pu, Jiang ; Royer, Guillaume.
    In: Papers.
    RePEc:arx:papers:1312.5617.

    Full description at Econpapers || Download paper

  34. Hedging under an expected loss constraint with small transaction costs. (2014). Soner, Mete H. ; Moreau, Ludovic ; Bouchard, Bruno.
    In: Papers.
    RePEc:arx:papers:1309.4916.

    Full description at Econpapers || Download paper

  35. Hedging under an expected loss constraint with small transaction costs. (2013). Soner, Mete ; Moreau, Ludovic ; Bouchard, Bruno.
    In: Working Papers.
    RePEc:hal:wpaper:hal-00863562.

    Full description at Econpapers || Download paper

  36. Superconvergence of the finite element solutions of the Black–Scholes equation. (2013). Ballestra, L. V. ; Ahmadian, D. ; Golbabai, A..
    In: Finance Research Letters.
    RePEc:eee:finlet:v:10:y:2013:i:1:p:17-26.

    Full description at Econpapers || Download paper

  37. Homogenization and asymptotics for small transaction costs: the multidimensional case. (2013). Touzi, Nizar ; Soner, Mete H. ; Possamai, Dylan.
    In: Papers.
    RePEc:arx:papers:1212.6275.

    Full description at Econpapers || Download paper

  38. Homogenization and asymptotics for small transaction costs. (2013). Touzi, Nizar ; Soner, Mete H..
    In: Papers.
    RePEc:arx:papers:1202.6131.

    Full description at Econpapers || Download paper

  39. Large liquidity expansion of super-hedging costs. (2012). Touzi, Nizar ; Soner, Mete H. ; Possamai, Dylan.
    In: Economics Papers from University Paris Dauphine.
    RePEc:dau:papers:123456789/5526.

    Full description at Econpapers || Download paper

  40. Option Pricing and Hedging with Small Transaction Costs. (2012). Muhle-Karbe, Johannes ; Kallsen, Jan.
    In: Papers.
    RePEc:arx:papers:1209.2555.

    Full description at Econpapers || Download paper

  41. Pricing a Contingent Claim Liability with Transaction Costs Using Asymptotic Analysis for Optimal Investment. (2011). Bichuch, Maxim.
    In: Papers.
    RePEc:arx:papers:1112.3012.

    Full description at Econpapers || Download paper

  42. Option hedging for small investors under liquidity costs. (2010). Etin, Umut ; Touzi, Nizar ; Soner, H..
    In: Finance and Stochastics.
    RePEc:spr:finsto:v:14:y:2010:i:3:p:317-341.

    Full description at Econpapers || Download paper

  43. Option hedging for small investors under liquidity costs. (2010). Cetin, Umut ; Touzi, Nizar ; Soner, Mete H..
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:28992.

    Full description at Econpapers || Download paper

  44. Option hedging theory under transaction costs. (2009). Lai, Tze Leung ; Lim, Tiong Wee.
    In: Journal of Economic Dynamics and Control.
    RePEc:eee:dyncon:v:33:y:2009:i:12:p:1945-1961.

    Full description at Econpapers || Download paper

  45. Transformation methods for evaluating approximations to the optimal exercise boundary for linear and nonlinear Black-Scholes equations. (2008). Sevcovic, Daniel.
    In: Papers.
    RePEc:arx:papers:0805.0611.

    Full description at Econpapers || Download paper

  46. An iterative algorithm for evaluating approximations to the optimal exercise boundary for a nonlinear Black-Scholes equation. (2007). Sevcovic, Daniel.
    In: Papers.
    RePEc:arx:papers:0710.5301.

    Full description at Econpapers || Download paper

  47. A unified approach to portfolio optimization with linear transaction costs. (2005). Zakamouline, Valeri.
    In: Mathematical Methods of Operations Research.
    RePEc:spr:mathme:v:62:y:2005:i:2:p:319-343.

    Full description at Econpapers || Download paper

  48. Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation. (2004). Düring, Bertram ; Fournie, Michel ; During, Bertram ; Jungel, Ansgar.
    In: CoFE Discussion Papers.
    RePEc:zbw:cofedp:0402.

    Full description at Econpapers || Download paper

  49. A Unified Approach to Portfolio Optimization with Linear Transaction Costs. (2004). Zakamouline, Valeri.
    In: GE, Growth, Math methods.
    RePEc:wpa:wuwpge:0404003.

    Full description at Econpapers || Download paper

  50. PRICING IN AN INCOMPLETE MARKET WITH AN AFFINE TERM STRUCTURE. (2004). Young, Virginia R..
    In: Mathematical Finance.
    RePEc:bla:mathfi:v:14:y:2004:i:3:p:359-381.

    Full description at Econpapers || Download paper

  51. High Order Compact Finite Difference Schemes for a Nonlinear Black-Scholes Equation. (2003). Düring, Bertram ; Fournie, Michel ; During, Bertram ; Jungel, Ansgar.
    In: International Journal of Theoretical and Applied Finance (IJTAF).
    RePEc:wsi:ijtafx:v:06:y:2003:i:07:n:s0219024903002183.

    Full description at Econpapers || Download paper

  52. High order compact finite difference schemes for a nonlinear Black-Scholes equation. (2001). Düring, Bertram ; Fournie, Michel ; During, Bertram ; Jungel, Ansgar.
    In: CoFE Discussion Papers.
    RePEc:zbw:cofedp:0107.

    Full description at Econpapers || Download paper

  53. OPTION PRICING FOR INCOMPLETE MARKETS VIA STOCHASTIC OPTIMIZATION: TRANSACTION COSTS, ADAPTIVE CONTROL AND FORECAST. (2001). Mikhailov, Sergei ; Fedotov, Sergei.
    In: International Journal of Theoretical and Applied Finance (IJTAF).
    RePEc:wsi:ijtafx:v:04:y:2001:i:01:n:s0219024901000912.

    Full description at Econpapers || Download paper

  54. Arbitrage and control problems in finance: A presentation. (2001). Jouini, Elyes.
    In: Economics Papers from University Paris Dauphine.
    RePEc:dau:papers:123456789/5590.

    Full description at Econpapers || Download paper

  55. Too much cocited documents. This list is not complete

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 19:41:56 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.