create a website

Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs. (2022). Wilson, Tom ; Rees, Phil ; Alexander, Monica ; Temple, Jeromey ; Grossman, Irina.
In: Population Research and Policy Review.
RePEc:kap:poprpr:v:41:y:2022:i:3:d:10.1007_s11113-021-09671-6.

Full description at Econpapers || Download paper

Cited: 8

Citations received by this document

Cites: 156

References cited by this document

Cocites: 26

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Is the age pension in Australia sustainable and fair? Evidence from forecasting the old-age dependency ratio using the Hamilton-Perry model. (2025). Shang, Han Lin ; Yang, Yang ; Chen, Sizhe.
    In: Journal of Population Research.
    RePEc:spr:joprea:v:42:y:2025:i:1:d:10.1007_s12546-024-09352-z.

    Full description at Econpapers || Download paper

  2. Forecasting rural depopulation in Spain. (2025). Gonzlez-Leonardo, Miguel.
    In: OSF Preprints.
    RePEc:osf:osfxxx:hjp4z_v1.

    Full description at Econpapers || Download paper

  3. Forecasting rural depopulation in Spain. (2025). Gonzlez-Leonardo, Miguel.
    In: OSF Preprints.
    RePEc:osf:osfxxx:hjp4z.

    Full description at Econpapers || Download paper

  4. Accuracy of small area mortality prediction methods: evidence from Poland. (2024). Orwat-Acedaska, Agnieszka.
    In: Journal of Population Research.
    RePEc:spr:joprea:v:41:y:2024:i:1:d:10.1007_s12546-023-09326-7.

    Full description at Econpapers || Download paper

  5. Estimating the civilian noninstitutional population for small areas: a modified cohort component approach using public use data. (2024). Forrester, Andrew C.
    In: Journal of Population Research.
    RePEc:spr:joprea:v:41:y:2024:i:1:d:10.1007_s12546-023-09322-x.

    Full description at Econpapers || Download paper

  6. Small-area population forecasting in a segregated city using density-functional fluctuation theory. (2024). Arias, Toms A ; Hall, Matthew ; Barron, Boris ; Kinkhabwala, Yunus A ; Chen, Yuchao ; Cohen, Itai.
    In: Journal of Computational Social Science.
    RePEc:spr:jcsosc:v:7:y:2024:i:3:d:10.1007_s42001-024-00305-3.

    Full description at Econpapers || Download paper

  7. The Future Process of Japan’s Population Aging: A Cluster Analysis Using Small Area Population Projection Data. (2024). Inoue, Takashi.
    In: Population Research and Policy Review.
    RePEc:kap:poprpr:v:43:y:2024:i:4:d:10.1007_s11113-024-09903-5.

    Full description at Econpapers || Download paper

  8. Application of P-TOPALS for Smoothing Input Data for Population Projections ‘At the Edge’. (2024). Wilson, Tom ; Dyrting, Sigurd ; Taylor, Andrew.
    In: Population Research and Policy Review.
    RePEc:kap:poprpr:v:43:y:2024:i:2:d:10.1007_s11113-024-09874-7.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Alexander, M., Zagheni, E., & Barbieri, M. (2017). A flexible Bayesian model for estimating subnational mortality. Demography, 54(6), 2025–2041. https://doi.org/10.1007/s13524-017-0618-7 .

  2. Alho, J. M. (2015). Population forecasts. In J. D. Wright (Ed.), International encyclopedia of the social & behavioral sciences (2nd ed., pp. 593–596). Elsevier.
    Paper not yet in RePEc: Add citation now
  3. Alkema, L., & New, J. R. (2014). Global estimation of child mortality using a Bayesian B-spline bias-reduction model. The Annals of Applied Statistics, 8(4), 2122–2149. https://doi.org/10.1214/14-AOAS768 .
    Paper not yet in RePEc: Add citation now
  4. Alkema, L., Raftery, A. E., Gerland, P., Clark, S. J., Pelletier, F., Buettner, T., & Heilig, G. K. (2011). Probabilistic projections of the total fertility rate for all countries. Demography, 48(3), 815–839. https://doi.org/10.1007/s13524-011-0040-5 .

  5. Alonso González, M. L., Fernández Vázquez, E., & Rubiera Morollón, F. (2015). A methodological note for local demographic projections: A shift-share analysis to disaggregate official aggregated estimations. Revista Electrónica de Comunicaciones y Trabajos de Asepuma, 16(1), 43–50.
    Paper not yet in RePEc: Add citation now
  6. Anson, J. (2018). Estimating local mortality tables for small areas: An application using Belgian sub-arrondissements. Quetelet Journal, 6(1), 73–97. https://doi.org/10.14428/rqj2018.06.01.04 .
    Paper not yet in RePEc: Add citation now
  7. Assunção, R. M., Schmertmann, C. P., Potter, J. E., & Cavenaghi, S. M. (2005). Empirical Bayes estimation of demographic schedules for small areas. Demography, 42(3), 537–558. https://doi.org/10.1353/dem.2005.0022 .

  8. Athukorala, W., Neelawela, P., Wilson, C., Miller, E., Sahama, T., Grace, P., Hefferan, M., Dissanayake, P., & Manawadu, O. (2010). Forecasting population changes and service requirements in the regions: A study of two regional councils in Queensland, Australia. Economic Analysis and Policy, 40(3), 327–349. https://doi.org/10.1016/S0313-5926(10)50033-X .

  9. Azose, J. J., & Raftery, A. E. (2015). Bayesian probabilistic projection of international migration. Demography, 52(5), 1627–1650. https://doi.org/10.1007/s13524-015-0415-0 .

  10. Baker, J., Alcántara, A., Ruan, X., Watkins, K., & Vasan, S. (2014). Spatial weighting improves accuracy in small-area demographic forecasts of urban census tract populations. Journal of Population Research, 31(4), 345–359. https://doi.org/10.1007/s12546-014-9137-1 .
    Paper not yet in RePEc: Add citation now
  11. Baker, J., Ruan, X., Alcantara, A., Jones, T., Watkins, K., McDaniel, M., Frey, M., Crouse, N., Rajbhandari, R., Morehouse, J., Sanchez, J., Inglis, M., Baros, S., Penman, S., Morrison, S., Budge, T., & Stallcup, W. (2008). Density-dependence in urban housing unit growth: An evaluation of the Pearl–Reed model for predicting housing unit stock at the census tract level. Journal of Economic and Social Measurement, 33(2–3), 155–163. https://doi.org/10.3233/JEM-2008-0301 .
    Paper not yet in RePEc: Add citation now
  12. Baker, J., Swanson, D. A., Tayman, J., & Tedrow, L. M. (2017). Cohort change ratios and their applications. Springer International Publishing.
    Paper not yet in RePEc: Add citation now
  13. Baker, J., Swanson, D., & Tayman, J. (2020). The accuracy of Hamilton–Perry population projections for census tracts in the United States. Population Research and Policy Review. https://doi.org/10.1007/s11113-020-09601-y .
    Paper not yet in RePEc: Add citation now
  14. Ballas, D., Rossiter, D., Thomas, B., Clarke, G., & Dorling, D. (2005b). Geography matters: Simulating the local impacts of national social policies. Joseph Rowntree Foundation.
    Paper not yet in RePEc: Add citation now
  15. Bates, J. M., & Granger, C. W. (1969). The combination of forecasts. Journal of the Operational Research Society, 20(4), 451–468. https://doi.org/10.1057/jors.1969.103 .
    Paper not yet in RePEc: Add citation now
  16. Belgiu, M., & Drăguţ, L. J. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 .
    Paper not yet in RePEc: Add citation now
  17. Bell, M. (1997). Small area forecasting for infrastructure planning: Towards a better practice. Department of Industry, Science and Tourism.
    Paper not yet in RePEc: Add citation now
  18. Boke-Olén, N., Abdi, A. M., Hall, O., & Lehsten, V. (2017). High-resolution African population projections from radiative forcing and socio-economic models, 2000 to 2100. Scientific Data, 4(1), 1–9. https://doi.org/10.1038/sdata.2016.130 .
    Paper not yet in RePEc: Add citation now
  19. Booth, H. (2006). Demographic forecasting: 1980 to 2005 in review. International Journal of Forecasting, 22(3), 547–581. https://doi.org/10.1016/j.ijforecast.2006.04.001 .

  20. Breidenbach, P., Kaeding, M., & Schaffner, S. (2019). Population projection for Germany 2015–2050 on grid level (RWI-GEO-GRID-POP-Forecast). Jahrbücher für Nationalökonomie und Statistik, 239(4), 733–745. https://doi.org/10.1515/jbnst-2017-0149 .

  21. Bryan, T. (2004). Chapter 20 Population estimates. In J. S. Siegel & D. A. Swanson (Eds.), The methods and materials of demography (2nd ed., pp. 523–560). Elsevier Academic Press.
    Paper not yet in RePEc: Add citation now
  22. Bryant, J. R., & Graham, P. J. (2013). Bayesian demographic accounts: Subnational population estimation using multiple data sources. Bayesian Analysis, 8(3), 591–622. https://doi.org/10.1214/13-BA820 .
    Paper not yet in RePEc: Add citation now
  23. Bryant, J., & Zhang, J. L. (2016). Bayesian forecasting of demographic rates for small areas: Emigration rates by age, sex, and region in New Zealand, 2014–2038. Statistica Sinica, 26, 1337–1363. https://doi.org/10.5705/ss.2014.200t .
    Paper not yet in RePEc: Add citation now
  24. Bryant, J., & Zhang, J. L. (2018). Bayesian demographic estimation and forecasting (1st ed.). CRC Press. https://doi.org/10.1201/9780429452987 .
    Paper not yet in RePEc: Add citation now
  25. Cameron, M. P., & Cochrane, W. (2017). Using land-use modelling to statistically downscale population projections to small areas. Australasian Journal of Regional Studies, 23(2), 195.
    Paper not yet in RePEc: Add citation now
  26. Cameron, M. P., & Poot, J. (2011). Lessons from stochastic small-area population projections: The case of Waikato subregions in New Zealand. Journal of Population Research, 28(2–3), 245–265. https://doi.org/10.1007/s12546-011-9056-3 .
    Paper not yet in RePEc: Add citation now
  27. Chen, Y., Li, X., Huang, K., Luo, M., & Gao, M. (2020). High-resolution gridded population projections for China under the shared socioeconomic pathways. Earth’s Future, 8(6), e2020EF001491. https://doi.org/10.1029/2020EF001491 .
    Paper not yet in RePEc: Add citation now
  28. Chi, G. (2009). Can knowledge improve population forecasts at subcounty levels? Demography, 46(2), 405–427. https://doi.org/10.1353/dem.0.0059 .

  29. Chi, G., & Voss, P. R. (2011). Small-area population forecasting: Borrowing strength across space and time. Population, Space and Place, 17(5), 505–520. https://doi.org/10.1002/psp.617 .
    Paper not yet in RePEc: Add citation now
  30. Chi, G., & Wang, D. (2017). Small-area population forecasting: A geographically weighted regression approach. In D. A. Swanson (Ed.), The frontiers of applied demography (pp. 449–471). Springer. https://doi.org/10.1007/978-3-319-43329-5_21 .
    Paper not yet in RePEc: Add citation now
  31. Chi, G., & Zhu, J. (2008). Spatial regression models for demographic analysis. Population Research and Policy Review, 27(1), 17–42. https://doi.org/10.1007/s11113-007-9051-8 .

  32. Chi, G., Zhou, X., & Voss, P. R. (2011). Small-area population forecasting in an urban setting: A spatial regression approach. Journal of Population Research, 28(2–3), 185–201. https://doi.org/10.1007/s12546-011-9053-6 .
    Paper not yet in RePEc: Add citation now
  33. Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559–583. https://doi.org/10.1016/0169-2070(89)90012-5 .

  34. Comber, A., & Zeng, W. (2019). Spatial interpolation using areal features: A review of methods and opportunities using new forms of data with coded illustrations. Geography Compass, 13(10), e12465. https://doi.org/10.1111/gec3.12465 .
    Paper not yet in RePEc: Add citation now
  35. Congdon, P. (2009). Life expectancies for small areas: A Bayesian random effects methodology. International Statistical Review, 77(2), 222–240. https://doi.org/10.1111/j.1751-5823.2009.00080.x .

  36. Congdon, P. (2014). Estimating life expectancies for US small areas: A regression framework. Journal of Geographical Systems, 16(1), 1–18. https://doi.org/10.1007/s10109-013-0177-4 .

  37. de Beer, J. (2012). Smoothing and projecting age-specific probabilities of death by TOPALS. Demographic Research, 27(20), 543–592. https://doi.org/10.4054/DemRes.2012.27.20 .

  38. Diamond, I., Tesfaghiorghis, H., & Joshi, H. (1990). The uses and users of population projections in Australia. Journal of the Australian Population Association, 7(2), 151–170. https://doi.org/10.1007/BF03029362 .
    Paper not yet in RePEc: Add citation now
  39. Dittgen, A., & Dutreuilh, C. (2005). Housing and household size in local population dynamics. Population (English Edition, 2002-), 60(3), 259–298. https://doi.org/10.2307/4148195 .

  40. Dockery, A. M., Harris, M. N., Holyoak, N., & Singh, R. B. (2020). A methodology for projecting sparse populations and its application to remote Indigenous communities. Journal of Geographical Systems. https://doi.org/10.1007/s10109-020-00329-z .
    Paper not yet in RePEc: Add citation now
  41. Dyrting, S. (2020). Smoothing migration intensities with P-TOPALS. Demographic Research, 43, 1527–1570. https://doi.org/10.4054/DemRes.2020.43.55 .

  42. Feng, Q., Wang, Z., Choi, S., & Zeng, Y. (2020). Forecast households at the county level: An application of the ProFamy extended cohort-component method in six counties of Southern California, 2010 to 2040. Population Research and Policy Review, 39(2), 253–281. https://doi.org/10.1007/s11113-019-09531-4 .

  43. Foss, W. (2002). Small area population forecasting. The Appraisal Journal, 70(2), 163–172.
    Paper not yet in RePEc: Add citation now
  44. Franzén, M., & Karlsson, T. (2010). Using national data to obtain small area estimators for population projections on sub-national level. Paper presented at the Conference of European Statisticians, Lisbon, Portugal. https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.11/2010/sp.2.e.pdf .
    Paper not yet in RePEc: Add citation now
  45. Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Kalogirou, S., & Wolff, E. (2018). Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. Giscience & Remote Sensing, 55(2), 221–242. https://doi.org/10.1080/15481603.2017.1408892 .
    Paper not yet in RePEc: Add citation now
  46. GLA. (2018). Projected Demand for School Places. London: Greater London Authority. Retrieved from https://data.london.gov.uk/dataset/pan-london-school-place-demand .
    Paper not yet in RePEc: Add citation now
  47. Gonzaga, M. R., & Schmertmann, C. P. (2016). Estimating age-and sex-specific mortality rates for small areas with TOPALS regression: An application to Brazil in 2010. Revista Brasileira de Estudos de População, 33(3), 629–652. https://doi.org/10.20947/S0102-30982016c0009 .
    Paper not yet in RePEc: Add citation now
  48. Goodwin, P. (2009). New evidence on the value of combining forecasts. Foresight: The International Journal of Applied Forecasting (12), 33–35.

  49. Grip, R. S., & Grip, M. L. (2020). Using multiple methods to provide prediction bands of K-12 enrollment projections. Population Research and Policy Review, 39(1), 1–22. https://doi.org/10.1007/s11113-019-09533-2 .

  50. Gullickson, A., & Moen, J. (2001). The use of stochastic methods in local area population forecasts. Paper prepared for the annual meeting of the Population Association of America, Washington DC.
    Paper not yet in RePEc: Add citation now
  51. Hamilton, C. H., & Perry, J. (1962). A short method for projecting population by age from one decennial census to another. Social Forces, 41(2), 163–170. https://doi.org/10.2307/2573607 .
    Paper not yet in RePEc: Add citation now
  52. Hansen, H. S. (2010). Small-area population projections—A key element in knowledge based e-governance. In K. N. Andersen, E. Francesconi, A. Grönlund & T. M. van Engers (Eds.), EGOVIS 2010. Lecture notes in computer science (Vol. 6267). Electronic government and the information systems perspective (pp. 32–46). Springer. https://doi.org/10.1007/978-3-642-15172-9_4 .
    Paper not yet in RePEc: Add citation now
  53. Harding, A., Vidyattama, Y., & Tanton, R. (2011). Demographic change and the needs-based planning of government services: Projecting small area populations using spatial microsimulation. Journal of Population Research, 28(2–3), 203–224. https://doi.org/10.1007/s12546-011-9061-6 .
    Paper not yet in RePEc: Add citation now
  54. Hauer, M. E. (2017). Migration induced by sea-level rise could reshape the US population landscape. Nature Climate Change, 7, 321–325. https://doi.org/10.1038/nclimate3271 .

  55. Hauer, M. E. (2019). Population projections for US counties by age, sex, and race controlled to shared socioeconomic pathway. Scientific Data, 6(1), 1–15. https://doi.org/10.1038/sdata.2019.5 .
    Paper not yet in RePEc: Add citation now
  56. Hauer, M. E., Evans, J. M., & Alexander, C. R. (2015). Sea-level rise and sub-county population projections in coastal Georgia. Population and Environment, 37(1), 44–62. https://doi.org/10.1007/s11111-015-0233-8 .
    Paper not yet in RePEc: Add citation now
  57. Hauer, M. E., Evans, J. M., & Mishra, D. R. (2016). Millions projected to be at risk from sea-level rise in the continental United States. Nature Climate Change, 6, 691–695. https://doi.org/10.1038/nclimate2961 .

  58. Hu, L., He, S., Han, Z., Xiao, H., Su, S., Weng, M., & Cai, Z. (2019). Monitoring housing rental prices based on social media: An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies. Land Use Policy, 82, 657–673. https://doi.org/10.1016/j.landusepol.2018.12.030 .

  59. Inoue, T. (2017). A new method for estimating small area demographics and its application to long-term population projection. In D. A. Swanson (Ed.), The frontiers of applied demography (pp. 473–489). Springer. https://doi.org/10.1007/978-3-319-43329-5_22 .
    Paper not yet in RePEc: Add citation now
  60. Isserman, A. M. (1977). The accuracy of population projections for subcounty areas. Journal of the American Institute of Planners, 43(3), 247–259. https://doi.org/10.1080/01944367708977786 .
    Paper not yet in RePEc: Add citation now
  61. Jannuzzi P (2005) Population projections for small areas: method and applications for districts and local population projections in Brazil. Paper prepared for the IUSSP conference, Tours, France. https://iussp2005.princeton.edu/papers/51422 .
    Paper not yet in RePEc: Add citation now
  62. Jiang, B., Jin, H., Liu, N., Quirk, M., & Searle, B. (2007). A HMM-based hierarchical framework for long-term population projection of small areas. In M. A. Orgun & J. Thornton (Eds.), AI 2007: Advances in artificial intelligence. AI 2007. Lecture notes in computer science (Vol. 4830, pp. 694–698). Springer. https://doi.org/10.1007/978-3-540-76928-6_77 .
    Paper not yet in RePEc: Add citation now
  63. Jonker, M. F., van Lenthe, F. J., Congdon, P. D., Donkers, B., Burdorf, A., & Mackenbach, J. P. (2012). Comparison of Bayesian random-effects and traditional life expectancy estimations in small-area applications. American Journal of Epidemiology, 176(10), 929–937. https://doi.org/10.1093/aje/kws152 .
    Paper not yet in RePEc: Add citation now
  64. Kanaroglou, P. S., Maoh, H. F., Newbold, B., Scott, D. M., & Paez, A. (2009). A demographic model for small area population projections: An application to the Census Metropolitan Area of Hamilton in Ontario, Canada. Environment and Planning A: Economy and Space, 41(4), 964–979. https://doi.org/10.1068/a40172 .

  65. Keilman, N. (2018). Probabilistic demographic forecasts. Vienna Yearbook of Population Research, 16, 25–36. https://doi.org/10.1553/populationyearbook2018s025 .

  66. Keilman, N. (2020). Uncertainty in population forecasts for the twenty-first century. Annual Review of Resource Economics, 12(1), 449–470. https://doi.org/10.1146/annurev-resource-110319-114841 .

  67. Leknes, S., & Løkken, S. A. (2020). Empirical Bayes estimation of local demographic rates. An application using Norwegian registry data. Statistics Norway. https://www.ssb.no/en/befolkning/artikler-og-publikasjoner/empirical-bayes-estimation-of-local-demographic-rates .
    Paper not yet in RePEc: Add citation now
  68. Li, H., & Hyndman, R. J. (2021). Assessing mortality inequality in the U.S.: What can be said about the future? Insurance: Mathematics and Economics, 99, 152–162. https://doi.org/10.1016/j.insmatheco.2021.03.014 .

  69. Li, N., & Lee, R. (2005). Coherent mortality forecasts for a group of populations: An extension of the Lee–Carter method. Demography, 42(3), 575–594. https://doi.org/10.1353/dem.2005.0021 .

  70. Li, T., & Corcoran, J. (2011). Testing dasymetric techniques to spatially disaggregate the regional population forecasts for South East Queensland. Journal of Spatial Science, 56(2), 203–221. https://doi.org/10.1080/14498596.2011.623343 .
    Paper not yet in RePEc: Add citation now
  71. Li, Y., Huang, C., Ding, L., Li, Z., Pan, Y., & Gao, X. (2019). Deep learning in bioinformatics: Introduction, application, and perspective in the big data era. Methods, 166, 4–21. https://doi.org/10.1016/j.ymeth.2019.04.008 .
    Paper not yet in RePEc: Add citation now
  72. Lomax, N., & Smith, A. (2017). Microsimulation for demography. Australian Population Studies, 1(1), 73–85. https://doi.org/10.37970/aps.v1i1.14 .
    Paper not yet in RePEc: Add citation now
  73. Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and Machine Learning forecasting methods: Concerns and ways forward. PLoS One, 13(3), e0194889. https://doi.org/10.1371/journal.pone.0194889 .

  74. Marois, G., & Bélanger, A. (2014). Microsimulation model projecting small area populations using contextual variables: An application to the Montreal Metropolitan area, 2006–2031. International Journal of Microsimulation, 7(1), 158–193. https://doi.org/10.34196/ijm.00097 .

  75. Marois, G., & Bélanger, A. (2015). Analyzing the impact of urban planning on population distribution in the Montreal metropolitan area using a small-area microsimulation projection model. Population and Environment, 37(2), 131–156. https://doi.org/10.1007/s11111-015-0234-7 .
    Paper not yet in RePEc: Add citation now
  76. Marshall, A., & Simpson, L. (2009). Population sustainability in rural communities: The case of two British national parks. Applied Spatial Analysis and Policy, 2(2), 107–127. https://doi.org/10.1007/s12061-008-9017-1 .
    Paper not yet in RePEc: Add citation now
  77. Matthews, S. A., & Parker, D. M. (2013). Progress in spatial demography. Demographic Research, 28, 271. https://doi.org/10.4054/DemRes.2013.28.10 .

  78. Mazzuco, S., & Keilman, N. (Eds.). (2020). Developments in demographic forecasting. Springer.
    Paper not yet in RePEc: Add citation now
  79. McKee, J. J., Rose, A. N., Bright, E. A., Huynh, T., & Bhaduri, B. L. (2015). Locally adaptive, spatially explicit projection of US population for 2030 and 2050. Proceedings of the National Academy of Sciences, 112(5), 1344–1349. https://doi.org/10.1073/pnas.1405713112 .
    Paper not yet in RePEc: Add citation now
  80. Merkens, J. L., Reimann, L., Hinkel, J., & Vafeidis, A. T. (2016). Gridded population projections for the coastal zone under the Shared Socioeconomic Pathways. Global and Planetary Change, 145, 57–66. https://doi.org/10.1016/j.gloplacha.2016.08.009 .
    Paper not yet in RePEc: Add citation now
  81. Myers, D. (1990). Housing demography: Linking demographic structure and housing markets. University of Wisconsin Press.
    Paper not yet in RePEc: Add citation now
  82. Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., & Shaalan, K. (2019). Speech recognition using deep neural networks: A systematic review. IEEE Access, 7, 19143–19165. https://doi.org/10.1109/ACCESS.2019.2896880 .
    Paper not yet in RePEc: Add citation now
  83. Norman, P., Rees, P., & Boyle, P. (2003). Achieving data compatibility over space and time: Creating consistent geographical zones. International Journal of Population Geography, 9(5), 365–386. https://doi.org/10.1002/ijpg.294 .
    Paper not yet in RePEc: Add citation now
  84. O’Neill, B., Kriegler, E., Riahi, K., Ebi, K., Hallegatte, S., Carter, T., Mathur, R., & van Vuuren, D. (2014). A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climate Change, 122, 387–400.

  85. Openshaw, S., & Van Der Knaap, G. (1983). Small area population forecasting: Some experience with British models. Tijdschrift voor economische en sociale geografie, 74(4), 291–304. https://doi.org/10.1111/j.1467-9663.1983.tb00976.x .
    Paper not yet in RePEc: Add citation now
  86. Pearl, R., & Reed, L. J. (1920). On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proceedings of the National Academy of Sciences of the United States of America, 6(6), 275. https://doi.org/10.1073/pnas.6.6.275 .
    Paper not yet in RePEc: Add citation now
  87. Portland State University Population Research Center. (2015). Methods and Data for Developing Coordinated Population Forecasts. Retrieved from https://pdxscholar.library.pdx.edu/prc_pub/32/ .
    Paper not yet in RePEc: Add citation now
  88. Pritchett, H. S. (1891). A formula for predicting the population of the United States. Publications of the American Statistical Association, 2(14), 278–286. https://doi.org/10.1080/15225437.1891.10504009 .
    Paper not yet in RePEc: Add citation now
  89. QGSO. (2018). Queensland Government population projections, 2018 edition: Methodology and assumptions. Queensland: Queensland Treasury. Retrieved from https://www.qgso.qld.gov.au/issues/2676/qld-government-population-projections-methodology-assumptions-2018-edn.pdf .
    Paper not yet in RePEc: Add citation now
  90. Raftery, A. E., Li, N., Ševčíková, H., Gerland, P., & Heilig, G. K. (2012). Bayesian probabilistic population projections for all countries. Proceedings of the National Academy of Sciences, 109(35), 13915–13921. https://doi.org/10.1073/pnas.1211452109 .
    Paper not yet in RePEc: Add citation now
  91. Rayer, S. (2008). Population forecast errors: A primer for planners. Journal of Planning Education and Research, 27(4), 417–430. https://doi.org/10.1177/0739456x07313925 .
    Paper not yet in RePEc: Add citation now
  92. Rayer, S. (2015). Demographic techniques: Small-area estimates and projections. In J. D. Wright (Ed.), International encyclopedia of the social & behavioral sciences (2nd ed., pp. 162–169). Elsevier. https://doi.org/10.1016/B978-0-08-097086-8.31015-7 .
    Paper not yet in RePEc: Add citation now
  93. Rayer, S., & Smith, S. K. (2010). Factors affecting the accuracy of subcounty population forecasts. Journal of Planning Education and Research, 30(2), 147–161. https://doi.org/10.1177/0739456X10380056 .
    Paper not yet in RePEc: Add citation now
  94. Rayer, S., & Wang, Y. (2020). Projections of Florida Population by County, 2020–2045, with Estimates for 2019. Bureau of Economic and Business Research, 53(186), 1–9.
    Paper not yet in RePEc: Add citation now
  95. Rayer, S., Smith, S. K., & Tayman, J. (2009). Empirical prediction intervals for county population forecasts. Population Research and Policy Review, 28(6), 773. https://doi.org/10.1007/s11113-009-9128-7 .

  96. Raymer, J., Bonaguidi, A., & Valentini, A. (2006). Describing and projecting the age and spatial structures of interregional migration in Italy. Population, Space and Place, 12(5), 371–388. https://doi.org/10.1002/psp.414 .
    Paper not yet in RePEc: Add citation now
  97. Rees, P. (1994). Key issues in subnational projection models. University of Leeds, School of Geography.
    Paper not yet in RePEc: Add citation now
  98. Rees, P., & Turton, I. (1998). Geocomputation: Solving geographical problems with new computing power. Environment and Planning A, 30, 1835–1838.
    Paper not yet in RePEc: Add citation now
  99. Rees, P., Clark, S., & Nawaz, R. (2020). Household forecasts for the planning of long-term domestic water demand: application to London and the Thames Valley. Population, Space and Place, 26, https://doi.org/10.1002/psp.2288 .
    Paper not yet in RePEc: Add citation now
  100. Rees, P., Clark, S., Wohland, P., & Kalamandeen, M. (2019). Evaluation of sub-national population projections: A case study for London and the Thames Valley. Applied Spatial Analysis and Policy, 12(4), 797–829. https://doi.org/10.1007/s12061-018-9270-x .
    Paper not yet in RePEc: Add citation now
  101. Rees, P., Norman, P., & Brown, D. (2004). A framework for progressively improving small area population estimates. Journal of the Royal Statistical Society: Series A (Statistics in Society), 167(1), 5–36. https://doi.org/10.1111/j.1467-985X.2004.00289.x .

  102. Rees, P., Wohland, R., Norman, P., & Lomax, N. (2015). Sub-national projection methods for Scotland and Scottish areas: A review and recommendations. A review and recommendations. Report for National Records of Scotland. School of Geography, University of Leeds, UK. https://www.nrscotland.gov.uk/files/statistics/consultation-groups/psg-19-08-15/paper1annexa-psg-19-08-15-snpp-academic-report.pdf .
    Paper not yet in RePEc: Add citation now
  103. Reinhold, M., & Thomsen, S. L. (2015). Subnational population projections by age: An evaluation of combined forecast techniques. Population Research and Policy Review, 34(4), 593–613. https://doi.org/10.1007/s11113-015-9362-0 .

  104. Riiman, V., Wilson, A., Milewicz, R., & Pirkelbauer, P. (2019). Comparing artificial neural network and cohort-component models for population forecasts. Population Review, 58(2), 100–116. https://doi.org/10.1353/prv.2019.0008 .
    Paper not yet in RePEc: Add citation now
  105. Scherbov, S., & Ediev, D. (2011). Significance of life table estimates for small populations: Simulation-based study of standard errors. Demographic Research, 24(22), 527–550. https://doi.org/10.4054/DemRes.2011.24.22 .

  106. Schmertmann, C. P., & Hauer, M. E. (2019). Bayesian estimation of total fertility from a population’s age–sex structure. Statistical Modelling, 19(3), 225–247. https://doi.org/10.1177/1471082X18801450 .
    Paper not yet in RePEc: Add citation now
  107. Schmertmann, C. P., Cavenaghi, S. M., Assunção, R. M., & Potter, J. E. (2013). Bayes plus Brass: Estimating total fertility for many small areas from sparse census data. Population Studies, 67(3), 255–273. https://doi.org/10.1080/00324728.2013.795602 .

  108. Schmitt, R. C., & Crosetti, A. H. (1951). Accuracy of the ratio method for forecasting city population. Land Economics, 27(4), 346–348. https://doi.org/10.2307/3159671 .

  109. Shang, H. L., & Booth, H. (2020). Synergy in fertility forecasting: Improving forecast accuracy through model averaging. Genus, 76(1), 1–23. https://doi.org/10.1186/s41118-020-00099-y .
    Paper not yet in RePEc: Add citation now
  110. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140–1144. https://doi.org/10.1126/science.aar6404 .
    Paper not yet in RePEc: Add citation now
  111. Simpson, L. (2002). Geography conversion tables: A framework for conversion of data between geographical units. International Journal of Population Geography, 8(1), 69–82. https://doi.org/10.1002/ijpg.235 .
    Paper not yet in RePEc: Add citation now
  112. Simpson, L. (2017). Integrated local demographic forecasts constrained by the supply of housing or jobs: Practice in the UK. In D. A. Swanson (Ed.), The frontiers of applied demography (pp. 329–350). Springer.
    Paper not yet in RePEc: Add citation now
  113. Simpson, L., & Snowling, H. (2011). Estimation of local demographic variation in a flexible framework for population projections. Journal of Population Research, 28(2–3), 109–127. https://doi.org/10.1007/s12546-011-9060-7 .
    Paper not yet in RePEc: Add citation now
  114. Smith, S. K. (1987). Tests of forecast accuracy and bias for county population projections. Journal of the American Statistical Association, 82(400), 991–1003. https://doi.org/10.1080/01621459.1987.10478528 .
    Paper not yet in RePEc: Add citation now
  115. Smith, S. K., & Shahidullah, M. (1995). An evaluation of population projection errors for census tracts. Journal of the American Statistical Association, 90(429), 64–71. https://doi.org/10.1080/01621459.1995.10476489 .
    Paper not yet in RePEc: Add citation now
  116. Smith, S. K., Tayman, J., & Swanson, D. A. (2013). A practitioner’s guide to state and local population projections. Springer.
    Paper not yet in RePEc: Add citation now
  117. Statistics Netherlands. (2020). Forecast: Population growth unabated in the next 50 years. Retrieved from https://www.cbs.nl/en-gb/news/2020/51/forecast-population-growth-unabated-in-the-next-50-years .
    Paper not yet in RePEc: Add citation now
  118. Statistics New Zealand. (2020). National population projections: 2020(base)–2073. Retrieved from https://www.stats.govt.nz/information-releases/national-population-projections-2020base2073 .
    Paper not yet in RePEc: Add citation now
  119. Striessnig, E., Gao, J., O’Neill, B. C., & Jiang, L. (2019). Empirically based spatial projections of US population age structure consistent with the shared socioeconomic pathways. Environmental Research Letters, 14(11), 114038. https://doi.org/10.1088/1748-9326/ab4a3a .
    Paper not yet in RePEc: Add citation now
  120. Swanson, D. A., & Tayman, J. (2012). Housing unit method. In Subnational population estimates (pp. 137–163). Springer, Netherlands. https://doi.org/10.1007/978-90-481-8954-0 .
    Paper not yet in RePEc: Add citation now
  121. Swanson, D. A., Schlottmann, A., & Schmidt, B. (2010). Forecasting the population of census tracts by age and sex: An example of the Hamilton–Perry method in action. Population Research and Policy Review, 29(1), 47–63. https://doi.org/10.1007/s11113-009-9144-7 .

  122. Tanton, R. (2014). A review of spatial microsimulation methods. International Journal of Microsimulation, 7(1), 4–25.

  123. Tanton, R., & Edwards, K. (2013). Spatial microsimulation: A reference guide for users (Vol. 6). Springer Science & Business Media.
    Paper not yet in RePEc: Add citation now
  124. Tayman, J. (2011). Assessing uncertainty in small area forecasts: State of the practice and implementation strategy. Population Research and Policy Review, 30(5), 781–800. https://doi.org/10.1007/s11113-011-9210-9 .

  125. Tayman, J., & Swanson, D. A. (2017). Using modified cohort change and child-woman ratios in the Hamilton–Perry forecasting method. Journal of Population Research, 34(3), 209–231. https://doi.org/10.1007/s12546-017-9190-7 .

  126. Tayman, J., Smith, S. K., & Lin, J. (2007). Precision, bias, and uncertainty for state population forecasts: An exploratory analysis of time series models. Population Research and Policy Review, 26(3), 347–369. https://doi.org/10.1007/s11113-007-9034-9 .

  127. Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(sup1), 234–240. https://doi.org/10.2307/143141 .
    Paper not yet in RePEc: Add citation now
  128. UN. (2019). World population prospects 2019. United Nations.
    Paper not yet in RePEc: Add citation now
  129. van Imhoff, E., & Post, W. (1998). Microsimulation methods for population projection. Population: An English Selection, 10(1), 97–138.

  130. Vasan, S., Baker, J., & Alcántara, A. (2018). Use of Kernel Density and Raster manipulation in GIS to predict population in New Mexico Census Tracts. Review of Economics Finance, 14, 25–38.

  131. Vidyattama, Y., & Tanton, R. (2010). Projecting small area statistics with Australian microsimulation model (SPATIALMSM). Australasian Journal of Regional Studies, 16(1), 99–126.
    Paper not yet in RePEc: Add citation now
  132. Voss, P. R. (2007). Demography as a spatial social science. Population Research and Policy Review, 26(5), 457–476. https://doi.org/10.1007/s11113-007-9047-4 .

  133. Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for computer vision: A brief review. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2018/7068349 .
    Paper not yet in RePEc: Add citation now
  134. Wakefield, J., Fuglstad, G.-A., Riebler, A., Godwin, J., Wilson, K., & Clark, S. J. (2019). Estimating under-five mortality in space and time in a developing world context. Statistical Methods in Medical Research, 28(9), 2614–2634. https://doi.org/10.1177/0962280218767988 .
    Paper not yet in RePEc: Add citation now
  135. Walters, A., & Cai, Q. (2008). Investigating the use of holt-winters time series model for forecasting population at the state and sub-state levels. Paper prepared for the Population Association of America 2008 Annual Meeting Program, New Orleans, LA. https://paa2008.princeton.edu/papers/80184 .
    Paper not yet in RePEc: Add citation now
  136. Weber, H. (2020). How well can the migration component of regional population change be predicted. A machine learning approach applied to German municipalities. Comparative Population Studies. https://doi.org/10.12765/CPoS-2020-08 .
    Paper not yet in RePEc: Add citation now
  137. White, H. R. (1954). Empirical study of the accuracy of selected methods of projecting state populations. Journal of the American Statistical Association, 49(267), 480–498. https://doi.org/10.1080/01621459.1954.10483516 .
    Paper not yet in RePEc: Add citation now
  138. Wilson, T. (2011). A review of sub-regional population projection methods. Queensland Centre for Population Research, The University of Queensland.
    Paper not yet in RePEc: Add citation now
  139. Wilson, T. (2014). Simplifying local area population and household projections with POPART. In M. N. Hoque & L. B. Potter (Eds.), Emerging techniques in applied demography (pp. 25–38). Springer Netherlands. https://doi.org/10.1007/978-94-017-8990-5_3 .
    Paper not yet in RePEc: Add citation now
  140. Wilson, T. (2015). New evaluations of simple models for small area population forecasts. Population, Space and Place, 21(4), 335–353. https://doi.org/10.1002/psp.1847 .
    Paper not yet in RePEc: Add citation now
  141. Wilson, T. (2016). Evaluation of alternative cohort-component models for local area population forecasts. Population Research Policy Review, 35(2), 241–261. https://doi.org/10.1007/s11113-015-9380-y .

  142. Wilson, T. (2017a). A checklist for reviewing draft population projections. Charles Darwin University. https://researchers.cdu.edu.au/en/publications/a-checklist-for-reviewing-draft-population-projections .
    Paper not yet in RePEc: Add citation now
  143. Wilson, T. (2017b). Does averaging yield more accurate local and regional population forecasts? Applied Spatial Analysis and Policy, 10(4), 497–513. https://doi.org/10.1007/s12061-016-9194-2 .
    Paper not yet in RePEc: Add citation now
  144. Wilson, T. (2018). Communicating population forecast uncertainty using perishable food terminology. Research Briefs, (RB03/2018), 1–15. http://www.cdu.edu.au/sites/default/files/research-brief-2018-03_0.pdf .
    Paper not yet in RePEc: Add citation now
  145. Wilson, T., & Bell, M. (2007). Probabilistic regional population forecasts: The example of Queensland, Australia. Geographical Analysis, 39(1), 1–25. https://doi.org/10.1111/j.1538-4632.2006.00693.x .
    Paper not yet in RePEc: Add citation now
  146. Wilson, T., & Rees, P. (2005). Recent developments in population projection methodology: A review. Population, Space and Place, 11(5), 337–360. https://doi.org/10.1002/psp.389 .
    Paper not yet in RePEc: Add citation now
  147. Wilson, T., & Rowe, F. (2011). The forecast accuracy of local government area population projections: A case study of Queensland. The Australasian Journal of Regional Studies, 17(2), 204–243.
    Paper not yet in RePEc: Add citation now
  148. Wilson, T., & Shalley, F. (2019). Subnational population forecasts: Do users want to know about uncertainty? Demographic Research, 41, 367–392. https://doi.org/10.4054/DemRes.2019.41.13 .

  149. Wilson, T., Brokensha, H., Rowe, F., & Simpson, L. (2018). Insights from the evaluation of past local area population forecasts. Population Research Policy Review, 37(1), 137–155. https://doi.org/10.1007/s11113-017-9450-4 .

  150. Wisniowski, A., & Raymer, J. (2016). Bayesian multiregional population forecasting: England. Joint Eurostat/UNECE Work Session on Demographic Projections, Geneva (pp. 18–20).
    Paper not yet in RePEc: Add citation now
  151. Wu, B. M., Birkin, M. H., & Rees, P. H. (2011). A Dynamic MSM with agent elements for spatial demographic forecasting. Social Science Computer Review, 29(1), 145–160. https://doi.org/10.1177/0894439310370113 .
    Paper not yet in RePEc: Add citation now
  152. Wu, B., & Birkin, M. (2013). Moses: A dynamic spatial microsimulation model for demographic planning. In R. Tanton & K. Edwards (Eds.), Spatial microsimulation: A reference guide for users (pp. 171–193). Springer.
    Paper not yet in RePEc: Add citation now
  153. Wu, Y., Schuster, M., Chen, Z., Le, Q., Macherey, W., Krikun, M.,Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, Ł., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., … Dean, J. (2016). Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. https://arxiv.org/abs/1609.08144 (arXiv preprint).
    Paper not yet in RePEc: Add citation now
  154. Xanthos, G., Ladias, C. A., & Genitsaropoulos, C. (2013). A method for forecasting population changes in alpine, semi-alpine and lowland communities of Epirus region in Greece. Regional Science Inquiry Journal, 1, 173–179.

  155. Zoraghein, H., & O’Neill, B. C. (2020a). A spatial population downscaling model for integrated human-environment analysis in the United States. Demographic Research, 43, 1563–1606. https://doi.org/10.4054/DemRes.2020.43.54 .

  156. Zoraghein, H., & O’Neill, B. C. (2020b). US state-level projections of the spatial distribution of population consistent with shared socioeconomic pathways. Sustainability, 12(8), 3374. https://doi.org/10.3390/su12083374 .

Cocites

Documents in RePEc which have cited the same bibliography

  1. Multiregional Population Forecasting: A Unifying Probabilistic Approach for Modelling the Components of Change. (2025). Winiowski, Arkadiusz ; Raymer, James.
    In: European Journal of Population.
    RePEc:spr:eurpop:v:41:y:2025:i:1:d:10.1007_s10680-025-09729-7.

    Full description at Econpapers || Download paper

  2. Bayesian Indirect Estimation of Historical Fertility in Europe and US Using Online Genealogical Data. (2025). Omenti, Riccardo ; Barban, Nicola ; Alexander, Monica.
    In: OSF Preprints.
    RePEc:osf:osfxxx:ygt2k_v1.

    Full description at Econpapers || Download paper

  3. Modifying model life tables to derive mortality curves for countries with excess mortality. (2025). Sanchez-Cespedes, Lina Mara.
    In: Demographic Research.
    RePEc:dem:demres:v:53:y:2025:i:2.

    Full description at Econpapers || Download paper

  4. Jointly estimating subnational mortality for multiple populations. (2025). Dharamshi, Ameer ; Barbieri, Magali ; Winant, Celeste ; Alexander, Monica.
    In: Demographic Research.
    RePEc:dem:demres:v:52:y:2025:i:3.

    Full description at Econpapers || Download paper

  5. Accuracy of small area mortality prediction methods: evidence from Poland. (2024). Orwat-Acedaska, Agnieszka.
    In: Journal of Population Research.
    RePEc:spr:joprea:v:41:y:2024:i:1:d:10.1007_s12546-023-09326-7.

    Full description at Econpapers || Download paper

  6. A Bayesian model for age at death with cohort effects. (2024). Brabec, Marek ; Dimai, Matteo.
    In: Demographic Research.
    RePEc:dem:demres:v:51:y:2024:i:33.

    Full description at Econpapers || Download paper

  7. Bayesian multi-dimensional mortality reconstruction. (2023). Yildiz, Dilek ; Winiowski, Arkadiusz ; Tamburini, Andrea.
    In: VID Working Papers.
    RePEc:vid:wpaper:2305.

    Full description at Econpapers || Download paper

  8. Decomposing dimensions of mortality inequality. (2022). Alexander, Monica.
    In: SocArXiv.
    RePEc:osf:socarx:uqwxj.

    Full description at Econpapers || Download paper

  9. Estimation and projection of probabilistic age- and sex-specific mortality rates across Brazilian municipalities between 2010 and 2030. (2022). Silva, Walter P ; Lima, Everton ; Queiroz, Bernardo L ; Gonzaga, Marcos Roberto ; Ichihara, Maria Yury ; Pinto, Elzo Pereira ; Carneiro, Lilia Carolina ; Flores-Ortiz, Renzo ; Dias, Victor Hugo.
    In: OSF Preprints.
    RePEc:osf:osfxxx:egrc9_v1.

    Full description at Econpapers || Download paper

  10. Estimation and projection of probabilistic age- and sex-specific mortality rates across Brazilian municipalities between 2010 and 2030. (2022). Carneiro, Lilia Carolina ; Lima, Everton ; Pinto, Elzo Pereira ; Queiroz, Bernardo L ; Silva, Walter P ; Dias, Victor Hugo ; Flores-Ortiz, Renzo ; Ichihara, Maria Yury ; Gonzaga, Marcos Roberto.
    In: OSF Preprints.
    RePEc:osf:osfxxx:egrc9.

    Full description at Econpapers || Download paper

  11. Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs. (2022). Wilson, Tom ; Rees, Phil ; Alexander, Monica ; Temple, Jeromey ; Grossman, Irina.
    In: Population Research and Policy Review.
    RePEc:kap:poprpr:v:41:y:2022:i:3:d:10.1007_s11113-021-09671-6.

    Full description at Econpapers || Download paper

  12. Combining Social Media and Survey Data to Nowcast Migrant Stocks in the United States. (2022). Alexander, Monica ; Polimis, Kivan ; Zagheni, Emilio.
    In: Population Research and Policy Review.
    RePEc:kap:poprpr:v:41:y:2022:i:1:d:10.1007_s11113-020-09599-3.

    Full description at Econpapers || Download paper

  13. Temporal Models for Demographic and Global Health Outcomes in Multiple Populations: Introducing a New Framework to Review and Standardise Documentation of Model Assumptions and Facilitate Model Comparison. (2022). Alexander, Monica ; Alkema, Leontine ; Susmann, Herbert.
    In: International Statistical Review.
    RePEc:bla:istatr:v:90:y:2022:i:3:p:437-467.

    Full description at Econpapers || Download paper

  14. Subnational Mortality Modelling: A Bayesian Hierarchical Model with Common Factors. (2021). Hanewald, Katja ; Wang, Xiaojun ; Lu, Qian.
    In: Risks.
    RePEc:gam:jrisks:v:9:y:2021:i:11:p:203-:d:675754.

    Full description at Econpapers || Download paper

  15. Probability-Based Failure Evaluation for Power Measuring Equipment. (2021). Qiu, Wei ; Tang, Qiu ; Ma, Jun ; Duan, Junfeng ; Liu, Jie.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:12:p:3632-:d:577494.

    Full description at Econpapers || Download paper

  16. Modeling County-Level Spatio-Temporal Mortality Rates Using Dynamic Linear Models. (2020). Gibbs, Zoe ; Richardson, Robert ; Groendyke, Chris ; Hartman, Brian.
    In: Risks.
    RePEc:gam:jrisks:v:8:y:2020:i:4:p:117-:d:440287.

    Full description at Econpapers || Download paper

  17. Computations of French lifetables by department, 1901–2014. (2020). Bonnet, Florian.
    In: Demographic Research.
    RePEc:dem:demres:v:42:y:2020:i:26.

    Full description at Econpapers || Download paper

  18. A General Age-Specific Mortality Model With an Example Indexed by Child Mortality or Both Child and Adult Mortality. (2019). Clark, Samuel J.
    In: Demography.
    RePEc:spr:demogr:v:56:y:2019:i:3:d:10.1007_s13524-019-00785-3.

    Full description at Econpapers || Download paper

  19. Life expectancy, adult mortality and completeness of death counts in Brazil and regions: comparative analysis of IHME, IBGE and other researchers estimates of levels and trends. (2019). Queiroz, Bernardo L ; Nogales, Ana Maria ; Gonzaga, Marcos Roberto ; Xavier, Daisy Maria ; Torrente, Bruno.
    In: OSF Preprints.
    RePEc:osf:osfxxx:pj3sx_v1.

    Full description at Econpapers || Download paper

  20. Life expectancy, adult mortality and completeness of death counts in Brazil and regions: comparative analysis of IHME, IBGE and other researchers estimates of levels and trends. (2019). Gonzaga, Marcos Roberto ; Xavier, Daisy Maria ; Torrente, Bruno ; Queiroz, Bernardo L ; Nogales, Ana Maria.
    In: OSF Preprints.
    RePEc:osf:osfxxx:pj3sx.

    Full description at Econpapers || Download paper

  21. Estimating multiregional survivorship probabilities for sparse data: An application to immigrant populations in Australia, 1981–2011. (2019). Raymer, James ; Baffour, Bernard.
    In: Demographic Research.
    RePEc:dem:demres:v:40:y:2019:i:18.

    Full description at Econpapers || Download paper

  22. Bayesian Estimation of Age-Specific Mortality and Life Expectancy for Small Areas With Defective Vital Records. (2018). Schmertmann, Carl ; Gonzaga, Marcos R.
    In: Demography.
    RePEc:spr:demogr:v:55:y:2018:i:4:d:10.1007_s13524-018-0695-2.

    Full description at Econpapers || Download paper

  23. Bayesian estimation of age-specific mortality and life expectancy for small areas with defective vital records. (2018). Gonzaga, Marcos Roberto ; Schmertmann, Carl.
    In: SocArXiv.
    RePEc:osf:socarx:syzwx_v1.

    Full description at Econpapers || Download paper

  24. Bayesian estimation of age-specific mortality and life expectancy for small areas with defective vital records. (2018). Schmertmann, Carl ; Gonzaga, Marcos Roberto.
    In: SocArXiv.
    RePEc:osf:socarx:syzwx.

    Full description at Econpapers || Download paper

  25. Deaths without denominators: using a matched dataset to study mortality patterns in the United States. (2018). Alexander, Monica.
    In: SocArXiv.
    RePEc:osf:socarx:q79ye_v1.

    Full description at Econpapers || Download paper

  26. Deaths without denominators: using a matched dataset to study mortality patterns in the United States. (2018). Alexander, Monica.
    In: SocArXiv.
    RePEc:osf:socarx:q79ye.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 19:01:04 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.