create a website

Probabilistic time series forecasting with boosted additive models: an application to smart meter data. (2015). Hyndman, Rob ; Ben Taieb, Souhaib ; Huser, Raphael ; Genton, Marc G..
In: Monash Econometrics and Business Statistics Working Papers.
RePEc:msh:ebswps:2015-12.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 48

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Alfares, HK and M Nazeeruddin (2002). Electric load forecasting: Literature survey and classification of methods. International journal of systems science 33(1), 23–34.
    Paper not yet in RePEc: Add citation now
  2. Bacher, P, H Madsen, and HA Nielsen (2009). Online short-term solar power forecasting. Solar Energy 83(10), 1772–1783.
    Paper not yet in RePEc: Add citation now
  3. Bühlmann, P and B Yu (2003). Boosting With the L2 Loss: Regression and Classification. Journal of the American Statistical Association 98(462), 324–339.

  4. Beckel, C, L Sadamori, T Staake, and S Santini (2014). Revealing household characteristics from smart meter data. Energy 78, 397–410.

  5. Ben Taieb, Huser, Hyndman & Genton: 9 June 2015 Probabilistic forecasting with boosted additive models: an application to smart meter data Arora, S and JW Taylor (2014). Forecasting Electricity Smart Meter Data Using Conditional Kernel Density Estimation. Omega.
    Paper not yet in RePEc: Add citation now
  6. Ben Taieb, Huser, Hyndman & Genton: 9 June 2015 Probabilistic forecasting with boosted additive models: an application to smart meter data Gneiting, T, F Balabdaoui, and AE Raftery (2007). Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society. Series B, Statistical methodology 69(2), 243– 268.

  7. Ben Taieb, Huser, Hyndman & Genton: 9 June 2015 Probabilistic forecasting with boosted additive models: an application to smart meter data Mayr, A, T Hothorn, and N Fenske (2012). Prediction intervals for future BMI values of individual children: a non-parametric approach by quantile boosting. BMC Medical Research Methodology 12, 6.
    Paper not yet in RePEc: Add citation now
  8. Ben Taieb, Huser, Hyndman & Genton: 9 June 2015 Probabilistic forecasting with boosted additive models: an application to smart meter data Zhu, X and MG Genton (2012). Short-Term Wind Speed Forecasting for Power System Operations. International Statistical Review 80(1), 2–23.
    Paper not yet in RePEc: Add citation now
  9. Ben Taieb, S and RJ Hyndman (2014). A gradient boosting approach to the Kaggle load forecasting competition. International Journal of Forecasting 30(2), 382–394.

  10. Chen, LH, MY Cheng, and L Peng (2009). Conditional variance estimation in heteroscedastic regression models. Journal of Statistical Planning and Inference 139(2), 236–245.
    Paper not yet in RePEc: Add citation now
  11. Chernozhukov, V, I Fernández-Val, and A Galichon (2010). Quantile and probability curves without crossing. Econometrica: Journal of the Econometric Society 78(3), 1093–1125.

  12. Cho, H, Y Goude, X Brossat, and Q Yao (2013). Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach. Journal of the American Statistical Association 108(501), 7–21.

  13. Commission For Energy Regulation (2011). Electricity smart metering customer behaviour trials findings report. Tech. rep. Dublin: Commission for Energy Regulation.
    Paper not yet in RePEc: Add citation now
  14. Engle, RF, CWJ Granger, R Ramanathan, and F Vahid-Araghi (1993). Probabilistic Methods in Forecasting Hourly Loads. Tech. rep. TR-101902. Electric Power Research Institute. http: //www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=TR-101902.
    Paper not yet in RePEc: Add citation now
  15. Fan, J and Q Yao (1998). Efficient estimation of conditional variance functions in stochastic regression. Biometrika 85(3), 645–660.

  16. Fan, S and RJ Hyndman (2012). Short-term load forecasting based on a semi-parametric additive model. IEEE Transactions on Power Systems 27(1), 134–141.

  17. Friedman, J and T Hastie (2000). Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors). Annals of Statistics 28(2), 337–407.
    Paper not yet in RePEc: Add citation now
  18. Friedman, JH (2001). Greedy function approximation: A gradient boosting machine. Annals of statistics 29(5), 1189–1232.
    Paper not yet in RePEc: Add citation now
  19. Gneiting, T (2011). Quantiles as optimal point forecasts. International Journal of forecasting 27(2), 197–207.

  20. Gneiting, T and AE Raftery (2007). Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association 102(477), 359–378.

  21. Gneiting, T and M Katzfuss (2014). Probabilistic Forecasting. Annual Review of Statistics and Its Application 1(1), 125–151.
    Paper not yet in RePEc: Add citation now
  22. Groen, JJJ, R Paap, and F Ravazzolo (2013). Real-Time Inflation Forecasting in a Changing World. Journal of business & economic statistics: a publication of the American Statistical Association 31(1), 29–44.

  23. Hastie, TJ, R Tibshirani, and JH Friedman (2008). The elements of statistical learning. Vol. 18. Springer-Verlag, p. 764.
    Paper not yet in RePEc: Add citation now
  24. Hastie, TJJ and RJJ Tibshirani (1990). Generalized additive models. Chapman & Hall/CRC.
    Paper not yet in RePEc: Add citation now
  25. Hippert, HS, CE Pedreira, and RC Souza (2001). Neural networks for short-term load forecasting: a review and evaluation. IEEE Transactions on Power Systems 16(1), 44–55.
    Paper not yet in RePEc: Add citation now
  26. Hong, T (2010). “Short Term Electric Load Forecasting”. PhD thesis.
    Paper not yet in RePEc: Add citation now
  27. Hothorn, T, P Bühlmann, T Kneib, M Schmid, and B Hofner (2010). Model-based boosting 2.0. Journal of Machine Learning Research: JMLR 11, 2109–2113.
    Paper not yet in RePEc: Add citation now
  28. Hyndman, RJ and G Athanasopoulos (2015). Forecasting: principles and practice. Melbourne, Australia: OTexts.
    Paper not yet in RePEc: Add citation now
  29. Jones, HE and DJ Spiegelhalter (2012). Improved probabilistic prediction of healthcare performance indicators using bidirectional smoothing models. Journal of the Royal Statistical Society. Series A 175(3), 729–747.

  30. Kneib, T (2013). Beyond mean regression. Statistical Modelling 13(4), 275–303.
    Paper not yet in RePEc: Add citation now
  31. Kneib, T, T Hothorn, and G Tutz (2009). Variable Selection and Model Choice in Geoadditive Regression Models. Biometrics 65(003), 626–634.

  32. Koenker, R (2005). Quantile Regression. Econometric Society Monographs. Cambridge University Press.

  33. Lou, Y, R Caruana, J Gehrke, and G Hooker (2013). Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp.623–631.
    Paper not yet in RePEc: Add citation now
  34. Palmer, TN (2012). Towards the probabilistic Earth-system simulator: a vision for the future of climate and weather prediction. Quarterly Journal of the Royal Meteorological Society 138(665), 841–861.
    Paper not yet in RePEc: Add citation now
  35. Pompey, P, A Bondu, Y Goude, and M Sinn (2014). “Massive-Scale Simulation of Electrical Load in Smart Grids using Generalized Additive Models”. In: Lecture Notes in Statistics: Modeling and Stochastic Learning for Forecasting in High Dimension. Springer.
    Paper not yet in RePEc: Add citation now
  36. Ruppert, D (2002). Selecting the Number of Knots for Penalized Splines. Journal of Computational and Graphical Statistics 11, 735–757.
    Paper not yet in RePEc: Add citation now
  37. Schapire, RE (1990). The strength of weak learnability. Machine Learning 5(2), 197–227.
    Paper not yet in RePEc: Add citation now
  38. Schapire, RE and Y Freund (2012). Boosting: Foundations and Algorithms. The MIT Press.
    Paper not yet in RePEc: Add citation now
  39. Schmid, M and T Hothorn (2008). Boosting Additive Models using component-wise P-Splines. Computational Statistics & Data Analysis 53(002), 298–311.

  40. Sevlian, R and R Rajagopal (2013). Value of aggregation in smart grids. In: Smart Grid Communications (SmartGridComm), 2013 IEEE International Conference on, pp.714–719.
    Paper not yet in RePEc: Add citation now
  41. Sevlian, R and R Rajagopal (2014). A Model For The Effect of Aggregation on Short Term Load Forecasting. In: IEEE Power and Energy Society General Meeting.
    Paper not yet in RePEc: Add citation now
  42. Sevlian, R, S Patel, and R Rajagopal (2014). Distribution System Load and Forecast Model. arXiv: 1407.3322 [stat.AP].
    Paper not yet in RePEc: Add citation now
  43. Spiegelhalter, DJ (2014). Statistics. The future lies in uncertainty. Science 345(6194), 264–265.
    Paper not yet in RePEc: Add citation now
  44. Tao, H and S Fan (2014). “Probabilistic Electric Load Forecasting: A Tutorial Review”. Submitted to International Journal of Forecasting.
    Paper not yet in RePEc: Add citation now
  45. Tashman, LJ (2000). Out-of-sample tests of forecasting accuracy: an analysis and review. International Journal of Forecasting 16(4), 437–450.

  46. Taylor, JW (2010). Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research 204(1), 139–152.

  47. Wijaya, TK, M Sinn, and B Chen (2015). Forecasting Uncertainty in Electricity Demand. In: AAAI-15 Workshop on Computational Sustainability.
    Paper not yet in RePEc: Add citation now
  48. Zheng, J, DW Gao, and L Lin (2013). Smart Meters in Smart Grid: An Overview. In: Green Technologies Conference, 2013 IEEE, pp.57–64.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Bank deposits and Google searches in a crisis economy: Bayesian non‐linear evidence for Greece (2009–2015). (2021). Tsionas, Mike ; Michaelides, Panayotis ; Konstantakis, Konstantinos ; Paraskeuopoulou, Despoina.
    In: International Journal of Finance & Economics.
    RePEc:wly:ijfiec:v:26:y:2021:i:4:p:5408-5424.

    Full description at Econpapers || Download paper

  2. BOOSTING: WHY YOU CAN USE THE HP FILTER. (2021). Shi, Zhentao ; Phillips, Peter.
    In: International Economic Review.
    RePEc:wly:iecrev:v:62:y:2021:i:2:p:521-570.

    Full description at Econpapers || Download paper

  3. Fiscal rules’ compliance and Social Welfare.. (2021). Baret, Kea.
    In: Working Papers of BETA.
    RePEc:ulp:sbbeta:2021-38.

    Full description at Econpapers || Download paper

  4. Improved Outcome Prediction Across Data Sources Through Robust Parameter Tuning. (2021). Hornung, Roman ; Ellenbach, Nicole ; Unger, Kristian ; Bischl, Bernd ; Boulesteix, Anne-Laure.
    In: Journal of Classification.
    RePEc:spr:jclass:v:38:y:2021:i:2:d:10.1007_s00357-020-09368-z.

    Full description at Econpapers || Download paper

  5. Boosting nonlinear predictability of macroeconomic time series. (2021). Virtanen, Timo ; Kauppi, Heikki.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:37:y:2021:i:1:p:151-170.

    Full description at Econpapers || Download paper

  6. Robust boosting for regression problems. (2021). Ju, Xiaomeng ; Salibian-Barrera, Matias.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301560.

    Full description at Econpapers || Download paper

  7. Boosting Tax Revenues with Mixed-Frequency Data in the Aftermath of Covid-19: The Case of New York. (2021). Lahiri, Kajal ; Yang, Cheng.
    In: CESifo Working Paper Series.
    RePEc:ces:ceswps:_9365.

    Full description at Econpapers || Download paper

  8. Why are some Chinese firms failing in the US capital markets? A machine learning approach. (2020). HASAN, IFTEKHAR ; Fu, Mengchuan ; Colak, Gonul.
    In: Pacific-Basin Finance Journal.
    RePEc:eee:pacfin:v:61:y:2020:i:c:s0927538x20300822.

    Full description at Econpapers || Download paper

  9. Grabit: Gradient tree-boosted Tobit models for default prediction. (2019). Sigrist, Fabio ; Hirnschall, Christoph.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:102:y:2019:i:c:p:177-192.

    Full description at Econpapers || Download paper

  10. Nonparametric Variable Selection and Its Application to Additive Models. (2018). Lin, LU ; Zhu, Li-Xing ; Feng, Zheng-Hui.
    In: IRTG 1792 Discussion Papers.
    RePEc:zbw:irtgdp:2018002.

    Full description at Econpapers || Download paper

  11. Boosting conditional logit model. (2018). Shi, Haolun ; Yin, Guosheng.
    In: Journal of choice modelling.
    RePEc:eee:eejocm:v:26:y:2018:i:c:p:48-63.

    Full description at Econpapers || Download paper

  12. An integrated approach of data envelopment analysis and boosted generalized linear mixed models for efficiency assessment. (2017). Anouze, Abdel Latef ; Bou-Hamad, Imad ; Larocque, Denis.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:253:y:2017:i:1:d:10.1007_s10479-016-2348-4.

    Full description at Econpapers || Download paper

  13. gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework. (2016). Schmid, Matthias ; Hofner, Benjamin ; Mayr, Andreas.
    In: Journal of Statistical Software.
    RePEc:jss:jstsof:v:074:i01.

    Full description at Econpapers || Download paper

  14. Day-ahead hourly electricity load modeling by functional regression. (2016). Feng, Yonghan ; Ryan, Sarah M.
    In: Applied Energy.
    RePEc:eee:appene:v:170:y:2016:i:c:p:455-465.

    Full description at Econpapers || Download paper

  15. ifo Konjunkturumfragen und Konjunkturanalyse: Band II. (2016). Nierhaus, Wolfgang ; Wollmershauser, Timo.
    In: ifo Forschungsberichte.
    RePEc:ces:ifofob:72.

    Full description at Econpapers || Download paper

  16. Causal inference by using invariant prediction: identification and confidence intervals. (2016). Buhlmann, Peter ; Meinshausen, Nicolai ; Peters, Jonas.
    In: Journal of the Royal Statistical Society Series B.
    RePEc:bla:jorssb:v:78:y:2016:i:5:p:947-1012.

    Full description at Econpapers || Download paper

  17. The role of component-wise boosting for regional economic forecasting. (2015). Wohlrabe, Klaus ; Lehmann, Robert.
    In: MPRA Paper.
    RePEc:pra:mprapa:68186.

    Full description at Econpapers || Download paper

  18. Looking into the Black Box of Boosting: The Case of Germany. (2015). Wohlrabe, Klaus ; Lehmann, Robert.
    In: MPRA Paper.
    RePEc:pra:mprapa:67608.

    Full description at Econpapers || Download paper

  19. Stock market volatility: Identifying major drivers and the nature of their impact. (2015). Mittnik, Stefan ; Robinzonov, Nikolay ; Spindler, Martin.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:58:y:2015:i:c:p:1-14.

    Full description at Econpapers || Download paper

  20. Variable selection in general multinomial logit models. (2015). Ponecker, Wolfgang ; Uhlmann, Lorenz ; Tutz, Gerhard.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:82:y:2015:i:c:p:207-222.

    Full description at Econpapers || Download paper

  21. Looking into the Black Box of Boosting: The Case of Germany. (2015). Wohlrabe, Klaus ; Lehmann, Robert.
    In: CESifo Working Paper Series.
    RePEc:ces:ceswps:_5686.

    Full description at Econpapers || Download paper

  22. Forecasting Aggregates with Disaggregate Variables: Does boosting help to select the most informative predictors?. (2014). Zeng, Jing.
    In: VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy.
    RePEc:zbw:vfsc14:100310.

    Full description at Econpapers || Download paper

  23. Boosting multi-step autoregressive forecasts. (2014). Hyndman, Rob ; Ben Taieb, Souhaib.
    In: Monash Econometrics and Business Statistics Working Papers.
    RePEc:msh:ebswps:2014-13.

    Full description at Econpapers || Download paper

  24. Forecasting Aggregates with Disaggregate Variables: Does Boosting Help to Select the Most Relevant Predictors?. (2014). Zeng, Jing.
    In: Working Paper Series of the Department of Economics, University of Konstanz.
    RePEc:knz:dpteco:1420.

    Full description at Econpapers || Download paper

  25. A gradient boosting approach to the Kaggle load forecasting competition. (2014). Hyndman, Rob ; Ben Taieb, Souhaib.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:30:y:2014:i:2:p:382-394.

    Full description at Econpapers || Download paper

  26. Forecasting with approximate dynamic factor models: The role of non-pervasive shocks. (2014). Luciani, Matteo.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:30:y:2014:i:1:p:20-29.

    Full description at Econpapers || Download paper

  27. Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence. (2014). Swanson, Norman ; Kim, Hyun Hak.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:178:y:2014:i:p2:p:352-367.

    Full description at Econpapers || Download paper

  28. A boosting approach for adapting the sparsity of risk prediction signatures based on different molecular levels. (2014). Martin, Schumacher ; Murat, Sariyar ; Harald, Binder .
    In: Statistical Applications in Genetics and Molecular Biology.
    RePEc:bpj:sagmbi:v:13:y:2014:i:3:p:15:n:4.

    Full description at Econpapers || Download paper

  29. Multinomial logit models with implicit variable selection. (2013). Tutz, Gerhard ; Zahid, Faisal .
    In: Advances in Data Analysis and Classification.
    RePEc:spr:advdac:v:7:y:2013:i:4:p:393-416.

    Full description at Econpapers || Download paper

  30. Variable Selection in Predictive Regressions. (2013). Ng, Serena.
    In: Handbook of Economic Forecasting.
    RePEc:eee:ecofch:2-752.

    Full description at Econpapers || Download paper

  31. Forecasting with many predictors: Is boosting a viable alternative?. (2011). Wohlrabe, Klaus ; Buchen, Teresa.
    In: Economics Letters.
    RePEc:eee:ecolet:v:113:y:2011:i:1:p:16-18.

    Full description at Econpapers || Download paper

  32. Practical variable selection for generalized additive models. (2011). Wood, Simon N. ; Marra, Giampiero.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:55:y:2011:i:7:p:2372-2387.

    Full description at Econpapers || Download paper

  33. Boosting local quasi-likelihood estimators. (2010). Ueki, Masao ; Fueda, Kaoru .
    In: Annals of the Institute of Statistical Mathematics.
    RePEc:spr:aistmt:v:62:y:2010:i:2:p:235-248.

    Full description at Econpapers || Download paper

  34. Early stopping in L2Boosting. (2010). Huang, Yufen ; Chang, Yuan-Chin Ivan.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:54:y:2010:i:10:p:2203-2213.

    Full description at Econpapers || Download paper

  35. Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data. (2010). Wang, Zhu.
    In: Statistical Applications in Genetics and Molecular Biology.
    RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:24.

    Full description at Econpapers || Download paper

  36. Boosting diffusion indices. (2009). Ng, Serena ; Bai, Jushan.
    In: Journal of Applied Econometrics.
    RePEc:jae:japmet:v:24:y:2009:i:4:p:607-629.

    Full description at Econpapers || Download paper

  37. Boosting nonlinear additive autoregressive time series. (2009). Shafik, Nivien ; Tutz, Gerhard.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:53:y:2009:i:7:p:2453-2464.

    Full description at Econpapers || Download paper

  38. Shrinkage and model selection with correlated variables via weighted fusion. (2009). Daye, John Z. ; Jeng, Jessie X..
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:53:y:2009:i:4:p:1284-1298.

    Full description at Econpapers || Download paper

  39. IFOCAST: Methoden der ifo-Kurzfristprognose. (2009). Wohlrabe, Klaus ; Mayr, Johannes ; Henzel, Steffen ; Carstensen, Kai.
    In: ifo Schnelldienst.
    RePEc:ces:ifosdt:v:62:y:2009:i:23:p:15-28.

    Full description at Econpapers || Download paper

  40. Selecting Instrumental Variables in a Data Rich Environment. (2009). Ng, Serena ; Bai, Jushan.
    In: Journal of Time Series Econometrics.
    RePEc:bpj:jtsmet:v:1:y:2009:i:1:n:4.

    Full description at Econpapers || Download paper

  41. Boosting additive models using component-wise P-Splines. (2008). Hothorn, Torsten ; Schmid, Matthias.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:53:y:2008:i:2:p:298-311.

    Full description at Econpapers || Download paper

  42. Adapting Prediction Error Estimates for Biased Complexity Selection in High-Dimensional Bootstrap Samples. (2008). Schumacher, Martin ; Binder, Harald.
    In: Statistical Applications in Genetics and Molecular Biology.
    RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:12.

    Full description at Econpapers || Download paper

  43. Convergence rates of general regularization methods for statistical inverse problems and applications. (2007). Ruymgaart, F. ; Munk, Axel ; Hohage, T. ; Bissantz, Nicolai.
    In: Technical Reports.
    RePEc:zbw:sfb475:200704.

    Full description at Econpapers || Download paper

  44. Accurate Short-Term Yield Curve Forecasting using Functional Gradient Descent. (2007). Trojani, Fabio ; Audrino, Francesco.
    In: University of St. Gallen Department of Economics working paper series 2007.
    RePEc:usg:dp2007:2007-24.

    Full description at Econpapers || Download paper

  45. A stochastic approximation view of boosting. (2007). Chang, Yuan-Chin Ivan ; Tsao, Andy C..
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:52:y:2007:i:1:p:325-334.

    Full description at Econpapers || Download paper

  46. Knot selection by boosting techniques. (2007). Tutz, Gerhard ; Leitenstorfer, Florian.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:51:y:2007:i:9:p:4605-4621.

    Full description at Econpapers || Download paper

  47. Boosting ridge regression. (2007). Binder, Harald ; Tutz, Gerhard.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:51:y:2007:i:12:p:6044-6059.

    Full description at Econpapers || Download paper

  48. Response shrinkage estimators in binary regression. (2006). Tutz, Gerhard ; Leitenstorfer, Florian.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:50:y:2006:i:10:p:2878-2901.

    Full description at Econpapers || Download paper

  49. Accurate Yield Curve Scenarios Generation using Functional Gradient Descent. (2005). Trojani, Fabio ; Audrino, Francesco.
    In: Computing in Economics and Finance 2005.
    RePEc:sce:scecf5:14.

    Full description at Econpapers || Download paper

  50. A note on margin-based loss functions in classification. (2004). Lin, YI.
    In: Statistics & Probability Letters.
    RePEc:eee:stapro:v:68:y:2004:i:1:p:73-82.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 19:32:53 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.