- Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).
Paper not yet in RePEc: Add citation now
- Aho, A. V. & Corasick, M. J. Efï¬cient string matching: an aid to bibliographic search. Commun. ACM 18, 333â340 (1975).
Paper not yet in RePEc: Add citation now
- Allen, F. et al. Jacks: joint analysis of CRISPR/Cas9 knockout screens. Genome Res. 29, 464â471 (2019).
Paper not yet in RePEc: Add citation now
Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149â157 (2019).
- Arbab, M. et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell 182, 463â480 (2020).
Paper not yet in RePEc: Add citation now
- Bae, S., Park, J. & Kim, J.-S. Cas-ofï¬nder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNAguided endonucleases. Bioinformatics 30, 1473â1475 (2014).
Paper not yet in RePEc: Add citation now
- Bainer, R., Ratman, D., Haverty, P. & Lianoglou, S. gCrisprTools: suite of functions for pooled Crispr screen QC and analysis. R package version 2.0.0 (2021).
Paper not yet in RePEc: Add citation now
- Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138âD141 (2004).
Paper not yet in RePEc: Add citation now
- Bhagwat, A. M. et al. multicrispr: gRNA design for prime editing and parallel targeting of thousands of targets. Life Sci. Alliance 3, e202000757 (2020).
Paper not yet in RePEc: Add citation now
- Canver, M. C. et al. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identiï¬es regulatory elements at traitassociated loci. Nat. Genet. 49, 625 (2017).
Paper not yet in RePEc: Add citation now
- Chen, C.-H. et al. Improved design and analysis of crispr knockout screens. Bioinformatics 34, 4095â4101 (2018). Article https://doi.org/10.1038/s41467-022-34320-7 Nature Communications| (2022)13:6568 65. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR/Cas9 system. Science 343, 80â84 (2014).
Paper not yet in RePEc: Add citation now
- Chen, W. et al. Massively parallel proï¬ling and predictive modeling of the outcomes of crispr/cas9-mediated double-strand break repair. Nucleic Acids Res. 47, 7989â8003 (2019).
Paper not yet in RePEc: Add citation now
- Cohen, S. et al. Nonsense mutation-dependent reinitiation of translation in mammalian cells. Nucleic Acids Res. 47, 6330â6338 (2019).
Paper not yet in RePEc: Add citation now
- Concordet, J.-P. & Haeussler, M. Crispor: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242âW245 (2018).
Paper not yet in RePEc: Add citation now
- Cox, D. B. et al. RNA editing with CRISPR-Cas13. Science 358, 1019â1027 (2017).
Paper not yet in RePEc: Add citation now
- Dempster, J. M. et al. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene ï¬tness effects. Genome Biol. 22, 1â23 (2021).
Paper not yet in RePEc: Add citation now
DeWeirdt, P. C. et al. Accounting for small variations in the tracrrna sequence improves sgrna activity predictions for crispr screening. Nat. Commun. 13, 5255 (2022).
- DeWeirdt, P. C. et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol. 39, 94â104 (2020).
Paper not yet in RePEc: Add citation now
Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101â108 (2012).
- Doench, J. G. et al. Optimized SGRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184 (2016).
Paper not yet in RePEc: Add citation now
- Doench, J. G. et al. Optimized sgrna design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184 (2016).
Paper not yet in RePEc: Add citation now
- Doench, J. G. et al. Rational design of highly active sgrnas for CRISPR-Cas9âmediated gene inactivation. Nat. Biotechnol. 32, 1262 (2014).
Paper not yet in RePEc: Add citation now
- Durinck, S. et al. Biomart and bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21, 3439â3440 (2005).
Paper not yet in RePEc: Add citation now
- Feldman, D. et al. Optical pooled screens in human cells. Cell 179, 787â799 (2019).
Paper not yet in RePEc: Add citation now
Findlay, G. M. et al. Accurate classiï¬cation of brca1 variants with saturation genome editing. Nature 562, 217â222 (2018).
- Fortin, J.-P. BSgenome.Hsapiens.UCSC.hg38.dbSNP151.major: Full genome sequences for Homo sapiens (UCSC version hg38, based on GRCh38.p12) with injected major alleles (dbSNP151). R package version 0.0.9999 (2021).
Paper not yet in RePEc: Add citation now
- Fortin, J.-P. BSgenome.Hsapiens.UCSC.hg38.dbSNP151.minor: Full genome sequences for Homo sapiens (UCSC version hg38, based on GRCh38.p12) with injected minor alleles (dbSNP151). R package version 0.0.9999 (2021).
Paper not yet in RePEc: Add citation now
- Fortin, J.-P. et al. Multiple-gene targeting and mismatch tolerance can confound analysis of genome-wide pooled CRISPR screens. Genome Biol. 20, 21 (2019).
Paper not yet in RePEc: Add citation now
- Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822â826 (2013).
Paper not yet in RePEc: Add citation now
Gaudelli, N. M. et al. Programmable base editing of a* t to g* c in genomic dna without dna cleavage. Nature 551, 464â471 (2017).
- Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, 1â16 (2004).
Paper not yet in RePEc: Add citation now
- Gilbert, L. A. et al. Genome-scale crispr-mediated control of gene repression and activation. Cell 159, 647â661 (2014).
Paper not yet in RePEc: Add citation now
- Hahne, F. & Ivanek, R. Visualizing genomic data using Gviz and bioconductor (Springer, 2016).
Paper not yet in RePEc: Add citation now
- Hanna, R. E. et al. Massively parallel assessment of human variants with base editor screens. Cell 184, 1064â1080 (2021).
Paper not yet in RePEc: Add citation now
- Hart, T. et al. Evaluation and design of genome-wide CRISPR/ SpCas9 knockout screens. G3: Genes Genomes Genet. 7, 2719â2727 (2017).
Paper not yet in RePEc: Add citation now
- Hart, T. et al. Evaluation and design of genome-wide crispr/spcas9 knockout screens. G3: Genes Genomes Genet. 7, 2719â2727 (2017).
Paper not yet in RePEc: Add citation now
- Hart, T. et al. High-resolution crispr screens reveal ï¬tness genes and genotype-speciï¬c cancer liabilities. Cell 163, 1515â1526 (2015).
Paper not yet in RePEc: Add citation now
- Hart, T., Brown, K. R., Sircoulomb, F., Rottapel, R. & Moffat, J. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol. Syst. Biol. 10, 733 (2014).
Paper not yet in RePEc: Add citation now
He, W. et al. De novo identiï¬cation of essential protein domains from CRISPR-Cas9 tiling-sgrna knockout screens. Nat. Commun. 10, 1â10 (2019).
- Heigwer, F. et al. Crispr library designer (CLD): software for multispecies design of single guide rna libraries. Genome Biol. 17, 1â10 (2016).
Paper not yet in RePEc: Add citation now
- Heigwer, F., Kerr, G. & Boutros, M. E-crisp: fast CRISPR target site identiï¬cation. Nat. Methods 11, 122â123 (2014).
Paper not yet in RePEc: Add citation now
- Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife 5, e19760 (2016).
Paper not yet in RePEc: Add citation now
- Hsu, P. D. et al. Dna targeting speciï¬city of RNA-guided cas9 nucleases. Nat. Biotechnol. 31, 827 (2013).
Paper not yet in RePEc: Add citation now
- Hsu, P. D. et al. Dna targeting speciï¬city of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827â832 (2013).
Paper not yet in RePEc: Add citation now
Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA speciï¬city. Nature 556, 57â63 (2018).
- Huber, W. et al. Orchestrating high-throughput genomic analysis with bioconductor. Nat. Methods 12, 115â121 (2015).
Paper not yet in RePEc: Add citation now
- Imkeller, K., Ambrosi, G., Boutros, M. & Huber, W. gscreend: modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection. Genome Biol. 21, 1â13 (2020).
Paper not yet in RePEc: Add citation now
- Karolchik, D. et al. The UCSC genome browser database. Nucleic Acids Res. 31, 51â54 (2003).
Paper not yet in RePEc: Add citation now
- Kim, E. & Hart, T. Improved analysis of CRISPR ï¬tness screens and reduced off-target effects with the BAGEL2 gene essentiality classiï¬er. Genome Med. 13, 1â11 (2021).
Paper not yet in RePEc: Add citation now
- Kim, H. K. et al. Deep learning improves prediction of CRISPRâCpf1 guide rna activity. Nat. Biotechnol. 36, 239 (2018).
Paper not yet in RePEc: Add citation now
- Kim, H. K. et al. Spcas9 activity prediction by deepspcas9, a deep learningâbased model with high generalization performance. Sci. Adv. 5, eaax9249 (2019).
Paper not yet in RePEc: Add citation now
- Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843â846 (2018).
Paper not yet in RePEc: Add citation now
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420â424 (2016).
- Konermann, S. et al. Transcriptome engineering with RNAtargeting type VI-D CRISPR effectors. Cell 173, 665â676 (2018).
Paper not yet in RePEc: Add citation now
- Konstantakos, V., Nentidis, A., Krithara, A. & Paliouras, G. Crisprâcas9 grna efï¬ciency prediction: an overview of predictive tools and the role of deep learning. Nucleic Acids Res. 50, 3616â3637 (2022).
Paper not yet in RePEc: Add citation now
Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317â330 (2015).
- Kuscu, C., Arslan, S., Singh, R., Thorpe, J. & Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32, 677â683 (2014).
Paper not yet in RePEc: Add citation now
- Labuhn, M. et al. Reï¬ned sgRNA efï¬cacy prediction improves large-and small-scale CRISPR-Cas9 applications. Nucleic acids Res. 46, 1375â1385 (2018).
Paper not yet in RePEc: Add citation now
- Labun, K. et al. Accurate analysis of genuine CRISPR editing events with amplican. Genome Res. 29, 843â847 (2019).
Paper not yet in RePEc: Add citation now
- Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E. Chopchop v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 44, W272âW276 (2016).
Paper not yet in RePEc: Add citation now
- Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efï¬cient alignment of short dna sequences to the human genome. Genome Biol. 10, R25 (2009).
Paper not yet in RePEc: Add citation now
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).
- Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an r package for interfacing with genome browsers. Bioinformatics 25, 1841â1842 (2009).
Paper not yet in RePEc: Add citation now
- Li, H. & Durbin, R. Fast and accurate short read alignment with burrowsâwheeler transform. Bioinformatics 25, 1754â1760 (2009).
Paper not yet in RePEc: Add citation now
- Li, W. et al. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol. 16, 1â13 (2015).
Paper not yet in RePEc: Add citation now
- Lindsay, H. et al. Crisprvariants charts the mutation spectrum of genome engineering experiments. Nat. Biotechnol. 34, 701â702 (2016).
Paper not yet in RePEc: Add citation now
- Liu, S. J. et al. Crispri-based genome-scale identiï¬cation of functional long noncoding RNA loci in human cells. Science 355, eaah7111 (2017).
Paper not yet in RePEc: Add citation now
- Lun, A. basilisk: Freezing Python dependencies inside bioconductor packages, R package version 1.3.5 (2021).
Paper not yet in RePEc: Add citation now
- McKenna, A. & Shendure, J. Flashfry: a fast and ï¬exible tool for large-scale CRISPR target design. BMC Biol. 16, 1â6 (2018).
Paper not yet in RePEc: Add citation now
- Meier, J. A., Zhang, F. & Sanjana, N. E. Guides: sgRNA design for loss-of-function screens. Nat. Methods 14, 831â832 (2017).
Paper not yet in RePEc: Add citation now
- Meyers, R. M. et al. Computational correction of copy number effect improves speciï¬city of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779â1784 (2017).
Paper not yet in RePEc: Add citation now
- Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. Chopchop: a CRISPR/Cas9 and talen web tool for genome editing. Nucleic Acids Res. 42, W401âW407 (2014).
Paper not yet in RePEc: Add citation now
- Moreno-Mateos, M. A. et al. CRISPRscan: designing highly efï¬cient sgRNAs for crispr-cas9 targeting in vivo. Nat. Methods 12, 982â988 (2015).
Paper not yet in RePEc: Add citation now
- Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259â1262 (2018).
Paper not yet in RePEc: Add citation now
- Pages, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: string objects representing biological sequences, and matching algorithms. R. package version 2, 10â18129 (2016).
Paper not yet in RePEc: Add citation now
- Park, J., Bae, S. & Kim, J.-S. Cas-designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31, 4014â4016 (2015).
Paper not yet in RePEc: Add citation now
- Pattanayak, V. et al. High-throughput proï¬ling of off-target DNA cleavage reveals RNA-programmed cas9 nuclease speciï¬city. Nat. Biotechnol. 31, 839â843 (2013).
Paper not yet in RePEc: Add citation now
- Perez, A. R. et al. Guidescan software for improved single and paired CRISPR guide RNA design. Nat. Biotechnol. 35, 347â349 (2017).
Paper not yet in RePEc: Add citation now
- Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110â121 (2010).
Paper not yet in RePEc: Add citation now
- Radzisheuskaya, A., Shlyueva, D., Müller, I. & Helin, K. Optimizing sgrna position markedly improves the efï¬ciency of crispr/dcas9mediated transcriptional repression. Nucleic Acids Res. 44, e141âe141 (2016).
Paper not yet in RePEc: Add citation now
- Replogle, J. M. et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat. Biotechnol. 38, 954â961 (2020).
Paper not yet in RePEc: Add citation now
- Sangree, A. K. et al. Benchmarking of SpCas9 variants enables deeper base editor screens of BRCA1 and BCL2. Nat. Commun. 13, 1318 (2021).
Paper not yet in RePEc: Add citation now
Sanson, K. R. et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 1â15 (2018).
- Schoonenberg, V. A. et al. Crispro: identiï¬cation of functional protein coding sequences based on genome editing dense mutagenesis. Genome Biol. 19, 1â19 (2018).
Paper not yet in RePEc: Add citation now
- Scott, D. A. & Zhang, F. Implications of human genetic variation in CRISPR-based therapeutic genome editing. Nat. Med. 23, 1095 (2017). Article https://doi.org/10.1038/s41467-022-34320-7 Nature Communications| (2022)13:6568 16. Lessard, S. et al. Human genetic variation alters CRISPR-Cas9 onand off-targeting speciï¬city at therapeutically implicated loci. Proc. Natl Acad. Sci. 114, E11257â66 (2017).
Paper not yet in RePEc: Add citation now
- Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385â397 (2015).
Paper not yet in RePEc: Add citation now
- Smits, A. H. et al. Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods 16, 1087â1093 (2019).
Paper not yet in RePEc: Add citation now
- Stemmer, M., Thumberger, T., del Sol Keyer, M., Wittbrodt, J. & Mateo, J. L. Cctop: an intuitive, ï¬exible and reliable crispr/cas9 target prediction tool. PLoS ONE 10, e0124633 (2015).
Paper not yet in RePEc: Add citation now
Thyme, S. B., Akhmetova, L., Montague, T. G., Valen, E. & Schier, A. F. Internal guide rna interactions interfere with cas9-mediated cleavage. Nat. Commun. 7, 11750 (2016).
- Tzelepis, K. et al. A crispr dropout screen identiï¬es genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 17, 1193â1205 (2016).
Paper not yet in RePEc: Add citation now
- Veeneman, B. et al. Pincer: improved CRISPR/Cas9 screening by efï¬cient cleavage at conserved residues. Nucleic Acids Res. 48, 9462â9477 (2020).
Paper not yet in RePEc: Add citation now
- Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-pamless engineered CRISPR-Cas9 variants. Science 368, 290â296 (2020).
Paper not yet in RePEc: Add citation now
- Wang, B. et al. Integrative analysis of pooled crispr genetic screens using MAGeCKFlute. Nat. Protoc. 14, 756â780 (2019).
Paper not yet in RePEc: Add citation now
- Wang, D. et al. Optimized CRISPR guide RNA design for two highï¬delity Cas9 variants by deep learning. Nat. Commun. 10, 1â14 (2019).
Paper not yet in RePEc: Add citation now
- Wang, G., Du, M., Wang, J. & Zhu, T. F. Genetic variation may confound analysis of CRISPR-Cas9 off-target mutations. Cell Discov. 4, 18 (2018).
Paper not yet in RePEc: Add citation now
- Wang, T. et al. Identiï¬cation and characterization of essential genes in the human genome. Science 350, 1096â1101 (2015).
Paper not yet in RePEc: Add citation now
- Wessels, H.-H. et al. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat. Biotechnol. 38, 722â727 (2020).
Paper not yet in RePEc: Add citation now
- Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670â676 (2014).
Paper not yet in RePEc: Add citation now
- Zhu, L. J. et al. Guideseq: a bioconductor package to analyze guide-seq datasets for CRISPR-Cas nucleases. BMC Genomics 18, 1â10 (2017).
Paper not yet in RePEc: Add citation now
- Zhu, L. J., Holmes, B. R., Aronin, N. & Brodsky, M. H. Crisprseek: a bioconductor package to identify target-speciï¬c guide rnas for CRISPR-Cas9 genome-editing systems. PLoS ONE 9, e108424 (2014).
Paper not yet in RePEc: Add citation now