create a website

A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies. (2022). Perampalam, Pirunthan ; Hoberecht, Luke ; Fortin, Jean-Philippe ; Lun, Aaron.
In: Nature Communications.
RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34320-7.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 100

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. GRA12 is a common virulence factor across Toxoplasma gondii strains and mouse subspecies. (2025). Torelli, Francesca ; Hildebrandt, Franziska ; Matias, Ana N ; Lockyer, Eloise ; Butterworth, Simon ; Pearson-Farr, Jennifer ; Song, Ok-Ryul ; Treeck, Moritz.
    In: Nature Communications.
    RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58876-2.

    Full description at Econpapers || Download paper

  2. Inhibition of GPX4 enhances CDK4/6 inhibitor and endocrine therapy activity in breast cancer. (2024). Choudhary, J ; Costa, M R ; Hafner, M ; Haider, S ; Ning, J ; Vijay, J ; Lord, C J ; Khalid, U ; Roumeliotis, T I ; Swain, A ; Guan, J ; Frankum, J ; Metcalfe, C ; Herrera-Abreu, M T ; Wilson, G ; Biton, A ; Cutts, R ; Perampalam, P ; Turner, N C ; Wong, W R ; Brough, R ; J-P. Fortin, ; Hickman, O ; Alexander, J ; Chan, J ; Sandoval, W.
    In: Nature Communications.
    RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53837-7.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).
    Paper not yet in RePEc: Add citation now
  2. Aho, A. V. & Corasick, M. J. Efficient string matching: an aid to bibliographic search. Commun. ACM 18, 333–340 (1975).
    Paper not yet in RePEc: Add citation now
  3. Allen, F. et al. Jacks: joint analysis of CRISPR/Cas9 knockout screens. Genome Res. 29, 464–471 (2019).
    Paper not yet in RePEc: Add citation now
  4. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

  5. Arbab, M. et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell 182, 463–480 (2020).
    Paper not yet in RePEc: Add citation now
  6. Bae, S., Park, J. & Kim, J.-S. Cas-offinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNAguided endonucleases. Bioinformatics 30, 1473–1475 (2014).
    Paper not yet in RePEc: Add citation now
  7. Bainer, R., Ratman, D., Haverty, P. & Lianoglou, S. gCrisprTools: suite of functions for pooled Crispr screen QC and analysis. R package version 2.0.0 (2021).
    Paper not yet in RePEc: Add citation now
  8. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).
    Paper not yet in RePEc: Add citation now
  9. Bhagwat, A. M. et al. multicrispr: gRNA design for prime editing and parallel targeting of thousands of targets. Life Sci. Alliance 3, e202000757 (2020).
    Paper not yet in RePEc: Add citation now
  10. Canver, M. C. et al. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at traitassociated loci. Nat. Genet. 49, 625 (2017).
    Paper not yet in RePEc: Add citation now
  11. Chen, C.-H. et al. Improved design and analysis of crispr knockout screens. Bioinformatics 34, 4095–4101 (2018). Article https://doi.org/10.1038/s41467-022-34320-7 Nature Communications| (2022)13:6568 65. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR/Cas9 system. Science 343, 80–84 (2014).
    Paper not yet in RePEc: Add citation now
  12. Chen, W. et al. Massively parallel profiling and predictive modeling of the outcomes of crispr/cas9-mediated double-strand break repair. Nucleic Acids Res. 47, 7989–8003 (2019).
    Paper not yet in RePEc: Add citation now
  13. Cohen, S. et al. Nonsense mutation-dependent reinitiation of translation in mammalian cells. Nucleic Acids Res. 47, 6330–6338 (2019).
    Paper not yet in RePEc: Add citation now
  14. Concordet, J.-P. & Haeussler, M. Crispor: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).
    Paper not yet in RePEc: Add citation now
  15. Cox, D. B. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).
    Paper not yet in RePEc: Add citation now
  16. Dempster, J. M. et al. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biol. 22, 1–23 (2021).
    Paper not yet in RePEc: Add citation now
  17. DeWeirdt, P. C. et al. Accounting for small variations in the tracrrna sequence improves sgrna activity predictions for crispr screening. Nat. Commun. 13, 5255 (2022).

  18. DeWeirdt, P. C. et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol. 39, 94–104 (2020).
    Paper not yet in RePEc: Add citation now
  19. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

  20. Doench, J. G. et al. Optimized SGRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184 (2016).
    Paper not yet in RePEc: Add citation now
  21. Doench, J. G. et al. Optimized sgrna design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184 (2016).
    Paper not yet in RePEc: Add citation now
  22. Doench, J. G. et al. Rational design of highly active sgrnas for CRISPR-Cas9–mediated gene inactivation. Nat. Biotechnol. 32, 1262 (2014).
    Paper not yet in RePEc: Add citation now
  23. Durinck, S. et al. Biomart and bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21, 3439–3440 (2005).
    Paper not yet in RePEc: Add citation now
  24. Feldman, D. et al. Optical pooled screens in human cells. Cell 179, 787–799 (2019).
    Paper not yet in RePEc: Add citation now
  25. Findlay, G. M. et al. Accurate classification of brca1 variants with saturation genome editing. Nature 562, 217–222 (2018).

  26. Fortin, J.-P. BSgenome.Hsapiens.UCSC.hg38.dbSNP151.major: Full genome sequences for Homo sapiens (UCSC version hg38, based on GRCh38.p12) with injected major alleles (dbSNP151). R package version 0.0.9999 (2021).
    Paper not yet in RePEc: Add citation now
  27. Fortin, J.-P. BSgenome.Hsapiens.UCSC.hg38.dbSNP151.minor: Full genome sequences for Homo sapiens (UCSC version hg38, based on GRCh38.p12) with injected minor alleles (dbSNP151). R package version 0.0.9999 (2021).
    Paper not yet in RePEc: Add citation now
  28. Fortin, J.-P. et al. Multiple-gene targeting and mismatch tolerance can confound analysis of genome-wide pooled CRISPR screens. Genome Biol. 20, 21 (2019).
    Paper not yet in RePEc: Add citation now
  29. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).
    Paper not yet in RePEc: Add citation now
  30. Gaudelli, N. M. et al. Programmable base editing of a* t to g* c in genomic dna without dna cleavage. Nature 551, 464–471 (2017).

  31. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, 1–16 (2004).
    Paper not yet in RePEc: Add citation now
  32. Gilbert, L. A. et al. Genome-scale crispr-mediated control of gene repression and activation. Cell 159, 647–661 (2014).
    Paper not yet in RePEc: Add citation now
  33. Hahne, F. & Ivanek, R. Visualizing genomic data using Gviz and bioconductor (Springer, 2016).
    Paper not yet in RePEc: Add citation now
  34. Hanna, R. E. et al. Massively parallel assessment of human variants with base editor screens. Cell 184, 1064–1080 (2021).
    Paper not yet in RePEc: Add citation now
  35. Hart, T. et al. Evaluation and design of genome-wide CRISPR/ SpCas9 knockout screens. G3: Genes Genomes Genet. 7, 2719–2727 (2017).
    Paper not yet in RePEc: Add citation now
  36. Hart, T. et al. Evaluation and design of genome-wide crispr/spcas9 knockout screens. G3: Genes Genomes Genet. 7, 2719–2727 (2017).
    Paper not yet in RePEc: Add citation now
  37. Hart, T. et al. High-resolution crispr screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).
    Paper not yet in RePEc: Add citation now
  38. Hart, T., Brown, K. R., Sircoulomb, F., Rottapel, R. & Moffat, J. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol. Syst. Biol. 10, 733 (2014).
    Paper not yet in RePEc: Add citation now
  39. He, W. et al. De novo identification of essential protein domains from CRISPR-Cas9 tiling-sgrna knockout screens. Nat. Commun. 10, 1–10 (2019).

  40. Heigwer, F. et al. Crispr library designer (CLD): software for multispecies design of single guide rna libraries. Genome Biol. 17, 1–10 (2016).
    Paper not yet in RePEc: Add citation now
  41. Heigwer, F., Kerr, G. & Boutros, M. E-crisp: fast CRISPR target site identification. Nat. Methods 11, 122–123 (2014).
    Paper not yet in RePEc: Add citation now
  42. Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife 5, e19760 (2016).
    Paper not yet in RePEc: Add citation now
  43. Hsu, P. D. et al. Dna targeting specificity of RNA-guided cas9 nucleases. Nat. Biotechnol. 31, 827 (2013).
    Paper not yet in RePEc: Add citation now
  44. Hsu, P. D. et al. Dna targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).
    Paper not yet in RePEc: Add citation now
  45. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

  46. Huber, W. et al. Orchestrating high-throughput genomic analysis with bioconductor. Nat. Methods 12, 115–121 (2015).
    Paper not yet in RePEc: Add citation now
  47. Imkeller, K., Ambrosi, G., Boutros, M. & Huber, W. gscreend: modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection. Genome Biol. 21, 1–13 (2020).
    Paper not yet in RePEc: Add citation now
  48. Karolchik, D. et al. The UCSC genome browser database. Nucleic Acids Res. 31, 51–54 (2003).
    Paper not yet in RePEc: Add citation now
  49. Kim, E. & Hart, T. Improved analysis of CRISPR fitness screens and reduced off-target effects with the BAGEL2 gene essentiality classifier. Genome Med. 13, 1–11 (2021).
    Paper not yet in RePEc: Add citation now
  50. Kim, H. K. et al. Deep learning improves prediction of CRISPR–Cpf1 guide rna activity. Nat. Biotechnol. 36, 239 (2018).
    Paper not yet in RePEc: Add citation now
  51. Kim, H. K. et al. Spcas9 activity prediction by deepspcas9, a deep learning–based model with high generalization performance. Sci. Adv. 5, eaax9249 (2019).
    Paper not yet in RePEc: Add citation now
  52. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).
    Paper not yet in RePEc: Add citation now
  53. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

  54. Konermann, S. et al. Transcriptome engineering with RNAtargeting type VI-D CRISPR effectors. Cell 173, 665–676 (2018).
    Paper not yet in RePEc: Add citation now
  55. Konstantakos, V., Nentidis, A., Krithara, A. & Paliouras, G. Crispr–cas9 grna efficiency prediction: an overview of predictive tools and the role of deep learning. Nucleic Acids Res. 50, 3616–3637 (2022).
    Paper not yet in RePEc: Add citation now
  56. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

  57. Kuscu, C., Arslan, S., Singh, R., Thorpe, J. & Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32, 677–683 (2014).
    Paper not yet in RePEc: Add citation now
  58. Labuhn, M. et al. Refined sgRNA efficacy prediction improves large-and small-scale CRISPR-Cas9 applications. Nucleic acids Res. 46, 1375–1385 (2018).
    Paper not yet in RePEc: Add citation now
  59. Labun, K. et al. Accurate analysis of genuine CRISPR editing events with amplican. Genome Res. 29, 843–847 (2019).
    Paper not yet in RePEc: Add citation now
  60. Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E. Chopchop v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 44, W272–W276 (2016).
    Paper not yet in RePEc: Add citation now
  61. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short dna sequences to the human genome. Genome Biol. 10, R25 (2009).
    Paper not yet in RePEc: Add citation now
  62. Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

  63. Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an r package for interfacing with genome browsers. Bioinformatics 25, 1841–1842 (2009).
    Paper not yet in RePEc: Add citation now
  64. Li, H. & Durbin, R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    Paper not yet in RePEc: Add citation now
  65. Li, W. et al. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol. 16, 1–13 (2015).
    Paper not yet in RePEc: Add citation now
  66. Lindsay, H. et al. Crisprvariants charts the mutation spectrum of genome engineering experiments. Nat. Biotechnol. 34, 701–702 (2016).
    Paper not yet in RePEc: Add citation now
  67. Liu, S. J. et al. Crispri-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355, eaah7111 (2017).
    Paper not yet in RePEc: Add citation now
  68. Lun, A. basilisk: Freezing Python dependencies inside bioconductor packages, R package version 1.3.5 (2021).
    Paper not yet in RePEc: Add citation now
  69. McKenna, A. & Shendure, J. Flashfry: a fast and flexible tool for large-scale CRISPR target design. BMC Biol. 16, 1–6 (2018).
    Paper not yet in RePEc: Add citation now
  70. Meier, J. A., Zhang, F. & Sanjana, N. E. Guides: sgRNA design for loss-of-function screens. Nat. Methods 14, 831–832 (2017).
    Paper not yet in RePEc: Add citation now
  71. Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).
    Paper not yet in RePEc: Add citation now
  72. Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. Chopchop: a CRISPR/Cas9 and talen web tool for genome editing. Nucleic Acids Res. 42, W401–W407 (2014).
    Paper not yet in RePEc: Add citation now
  73. Moreno-Mateos, M. A. et al. CRISPRscan: designing highly efficient sgRNAs for crispr-cas9 targeting in vivo. Nat. Methods 12, 982–988 (2015).
    Paper not yet in RePEc: Add citation now
  74. Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).
    Paper not yet in RePEc: Add citation now
  75. Pages, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: string objects representing biological sequences, and matching algorithms. R. package version 2, 10–18129 (2016).
    Paper not yet in RePEc: Add citation now
  76. Park, J., Bae, S. & Kim, J.-S. Cas-designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31, 4014–4016 (2015).
    Paper not yet in RePEc: Add citation now
  77. Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843 (2013).
    Paper not yet in RePEc: Add citation now
  78. Perez, A. R. et al. Guidescan software for improved single and paired CRISPR guide RNA design. Nat. Biotechnol. 35, 347–349 (2017).
    Paper not yet in RePEc: Add citation now
  79. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010).
    Paper not yet in RePEc: Add citation now
  80. Radzisheuskaya, A., Shlyueva, D., Müller, I. & Helin, K. Optimizing sgrna position markedly improves the efficiency of crispr/dcas9mediated transcriptional repression. Nucleic Acids Res. 44, e141–e141 (2016).
    Paper not yet in RePEc: Add citation now
  81. Replogle, J. M. et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat. Biotechnol. 38, 954–961 (2020).
    Paper not yet in RePEc: Add citation now
  82. Sangree, A. K. et al. Benchmarking of SpCas9 variants enables deeper base editor screens of BRCA1 and BCL2. Nat. Commun. 13, 1318 (2021).
    Paper not yet in RePEc: Add citation now
  83. Sanson, K. R. et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 1–15 (2018).

  84. Schoonenberg, V. A. et al. Crispro: identification of functional protein coding sequences based on genome editing dense mutagenesis. Genome Biol. 19, 1–19 (2018).
    Paper not yet in RePEc: Add citation now
  85. Scott, D. A. & Zhang, F. Implications of human genetic variation in CRISPR-based therapeutic genome editing. Nat. Med. 23, 1095 (2017). Article https://doi.org/10.1038/s41467-022-34320-7 Nature Communications| (2022)13:6568 16. Lessard, S. et al. Human genetic variation alters CRISPR-Cas9 onand off-targeting specificity at therapeutically implicated loci. Proc. Natl Acad. Sci. 114, E11257–66 (2017).
    Paper not yet in RePEc: Add citation now
  86. Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385–397 (2015).
    Paper not yet in RePEc: Add citation now
  87. Smits, A. H. et al. Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods 16, 1087–1093 (2019).
    Paper not yet in RePEc: Add citation now
  88. Stemmer, M., Thumberger, T., del Sol Keyer, M., Wittbrodt, J. & Mateo, J. L. Cctop: an intuitive, flexible and reliable crispr/cas9 target prediction tool. PLoS ONE 10, e0124633 (2015).
    Paper not yet in RePEc: Add citation now
  89. Thyme, S. B., Akhmetova, L., Montague, T. G., Valen, E. & Schier, A. F. Internal guide rna interactions interfere with cas9-mediated cleavage. Nat. Commun. 7, 11750 (2016).

  90. Tzelepis, K. et al. A crispr dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 17, 1193–1205 (2016).
    Paper not yet in RePEc: Add citation now
  91. Veeneman, B. et al. Pincer: improved CRISPR/Cas9 screening by efficient cleavage at conserved residues. Nucleic Acids Res. 48, 9462–9477 (2020).
    Paper not yet in RePEc: Add citation now
  92. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-pamless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).
    Paper not yet in RePEc: Add citation now
  93. Wang, B. et al. Integrative analysis of pooled crispr genetic screens using MAGeCKFlute. Nat. Protoc. 14, 756–780 (2019).
    Paper not yet in RePEc: Add citation now
  94. Wang, D. et al. Optimized CRISPR guide RNA design for two highfidelity Cas9 variants by deep learning. Nat. Commun. 10, 1–14 (2019).
    Paper not yet in RePEc: Add citation now
  95. Wang, G., Du, M., Wang, J. & Zhu, T. F. Genetic variation may confound analysis of CRISPR-Cas9 off-target mutations. Cell Discov. 4, 18 (2018).
    Paper not yet in RePEc: Add citation now
  96. Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015).
    Paper not yet in RePEc: Add citation now
  97. Wessels, H.-H. et al. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat. Biotechnol. 38, 722–727 (2020).
    Paper not yet in RePEc: Add citation now
  98. Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676 (2014).
    Paper not yet in RePEc: Add citation now
  99. Zhu, L. J. et al. Guideseq: a bioconductor package to analyze guide-seq datasets for CRISPR-Cas nucleases. BMC Genomics 18, 1–10 (2017).
    Paper not yet in RePEc: Add citation now
  100. Zhu, L. J., Holmes, B. R., Aronin, N. & Brodsky, M. H. Crisprseek: a bioconductor package to identify target-specific guide rnas for CRISPR-Cas9 genome-editing systems. PLoS ONE 9, e108424 (2014).
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells. (2024). Arangundy-Franklin, Sebastian ; Shivak, David A ; Mureli, Rakshaa ; Xia, Danny F ; Schmidt, Nicola J ; Kadam, Bhakti N ; Scarlott, Nicholas A ; Reik, Andreas ; Davis, Jessica E ; Miller, Jeffrey C ; Eshleman, Jason ; Bendaa, Yuri R ; Zhou, Yuanyue ; Lew, Garrett ; Vaidya, Vishvesha ; Fauser, Friedrich.
    In: Nature Communications.
    RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45100-w.

    Full description at Econpapers || Download paper

  2. Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts. (2024). Smets, Jolien ; Steensels, Jan ; Cautereels, Charlotte ; Gorkovskiy, Anton ; Zimmermann, Anna ; Zhu, Yanmei ; Jacobs, Thomas B ; Cool, Lloyd ; Verstrepen, Kevin J ; de Saeger, Jonas.
    In: Nature Communications.
    RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44996-8.

    Full description at Econpapers || Download paper

  3. mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy. (2023). Fenske, Stefanie ; Wogenstein, Gabriele Maria ; Thalhammer, Stefan Bernhard ; Becirovic, Elvir ; Ferreira, Raphael ; Otify, Dina Yehia ; Karguth, Nina ; Mittas, David Manuel ; Boon, Nanda ; Grimm, Christian ; Bartoschek, Michael David ; Splith, Victoria ; Biel, Martin ; Mehlfeld, Verena ; Brummer, Manuela ; Weber, Valentin Johannes ; Riedmayr, Lisa Maria ; Bohm, Sybille ; Hinrichsmeyer, Klara Sonnie ; Michalakis, Stylianos ; Wijnholds, Jan.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42386-0.

    Full description at Econpapers || Download paper

  4. Digital data storage on DNA tape using CRISPR base editors. (2023). Zadegan, Reza ; Guerrero, Jorge Eduardo ; Josephs, Eric A ; Lajeunesse, Dennis R ; Sadremomtaz, Afsaneh ; Glass, Robert F.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42223-4.

    Full description at Econpapers || Download paper

  5. Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system. (2023). Liu, Shishi ; Yang, Liang ; Tang, Zhongjie ; Huang, Lan ; Zhong, Zhaohui ; Zhang, Yong ; Qi, Yiping ; He, Yao ; Zheng, Xuelian ; Fan, Tingting ; Xiang, Shuyue.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41802-9.

    Full description at Econpapers || Download paper

  6. A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets. (2023). Huszar, Krisztina ; Toth, Eszter ; Welker, Ervin ; Talas, Andras ; Bartos, Zsuzsa ; Rakvacs, Zsofia ; Ligeti, Zoltan ; Vegi, Vanessza Laura ; Krausz, Sarah Laura ; Kulcsar, Peter Istvan.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41393-5.

    Full description at Econpapers || Download paper

  7. A split and inducible adenine base editor for precise in vivo base editing. (2023). Zeng, Hongzhi ; Peng, Fei ; Osikpa, Emmanuel C ; Ma, Dacheng ; Lingineni, Ananya ; Sun, Zheng ; Gao, Xue ; Yuan, Qichen ; Gilberd, Peretz ; Chee, Kelly.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41331-5.

    Full description at Econpapers || Download paper

  8. One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids. (2023). Gandhi, Shashank ; Clevers, Hans ; Harshuk-Shabso, Sarina ; Son, Gijs ; Boxtel, Ruben ; Peci, Flavia ; Schurmann, Paul ; Hendriks, Delilah ; Akkerman, Ninouk ; Andersson-Rolf, Amanda ; Boretto, Matteo G ; Celotti, Martina ; Geurts, Maarten H ; Es, Johan H ; Chuva, Susana M ; Begthel, Harry.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40701-3.

    Full description at Econpapers || Download paper

  9. Rapid and definitive treatment of phenylketonuria in variant-humanized mice with corrective editing. (2023). Qu, Ping ; Alameh, Mohamad-Gabriel ; Carrasco, Manuel J ; Musunuru, Kiran ; Brooks, Dominique L ; Wang, Xiao ; Peranteau, William H ; Ahrens-Nicklas, Rebecca C.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39246-2.

    Full description at Econpapers || Download paper

  10. Tumour mutations in long noncoding RNAs enhance cell fitness. (2023). Guillen-Ramirez, Hugo ; Lanzos, Andres ; Esposito, Roberta ; Basile, Giulia ; Andrades, Alvaro ; Bosch-Guiteras, Nuria ; McCluggage, Finn ; Tham, Ai Ming ; Roemmele, Michaela ; Zoni, Eugenio ; Vancura, Adrienne ; Medova, Michaela ; Meise, Dominik F ; Ochsenbein, Adrian F ; Stroka, Deborah ; Zimmer, Yitzhak ; Julio, Marianna Kruithof-De ; Wenger, Corina ; Uroda, Tina ; Hovhannisyan, Lusine ; Riether, Carsten ; Polidori, Taisia ; Mela, Lia ; Merlin, Bernard Mefi ; Ramnarayanan, Sunandini ; Schwarz, Kyriakos ; Fox, Archa ; Zwyssig, Sandra ; Buchi, Isabel ; Mihaljevic, Ante ; Johnson, Rory.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39160-7.

    Full description at Econpapers || Download paper

  11. Template-jumping prime editing enables large insertion and exon rewriting in vivo. (2023). Xue, Wen ; Gaston, Nicholas ; Sontheimer, Erik J ; Zheng, Chunwei ; Liu, Bin ; Dong, Xiaolong.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39137-6.

    Full description at Econpapers || Download paper

  12. HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing. (2023). Huang, Meiyu ; Wang, Keshan ; Li, JU ; Yang, Chao ; Bi, Changhao ; Cheng, Zhihui ; Ma, Zhenzhen ; Zhang, Xueli ; Dong, Xingxiao ; Zhu, Xiagu.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38193-2.

    Full description at Econpapers || Download paper

  13. Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. (2023). Wei, Yinghui ; Zhou, Jingxing ; Wang, Yao ; Lin, Jiajia ; Kong, Xuqiang ; Yang, Hui ; Shen, Xiaowen ; Zhang, Hainan ; Bai, Weiya ; Zhong, NA ; Xue, Mingxing ; Yuan, Yuan ; Shi, Linyu.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37829-7.

    Full description at Econpapers || Download paper

  14. Cytosine base editors induce off-target mutations and adverse phenotypic effects in transgenic mice. (2023). Feng, HU ; Zuo, Zhenrui ; Lu, Hongjiang ; Sun, Yongsen ; Zhang, Haihang ; Xin, Ying ; He, Chenfei ; Wei, WU ; Yuan, Tanglong ; Yan, Nana ; Li, Nana ; Xie, Long ; Zheng, Jitan.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37508-7.

    Full description at Econpapers || Download paper

  15. Prime editing with genuine Cas9 nickases minimizes unwanted indels. (2023). Kim, Jin-Soo ; Lee, Jimin ; Chung, Eu Gene ; Mok, Young Geun ; Cho, Sung-Ik ; Lim, Kayeong.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37507-8.

    Full description at Econpapers || Download paper

  16. A regulatory variant at 19p13.3 is associated with primary biliary cholangitis risk and ARID3A expression. (2023). Ma, Xiong ; Fang, Jingyuan ; Xiao, Xiao ; Wang, Hanxiao ; Lyu, Zhuwan ; Liu, Xiangdong ; Gershwin, Eric M ; Tang, Ruqi ; You, Zhengrui ; Chen, Ruiling ; Huang, Bingyuan ; Shi, Yongyong ; Miao, QI ; Wei, Yiran ; Lian, Min ; Seldin, Michael F ; Liang, Xueying ; Zhang, Jun.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37213-5.

    Full description at Econpapers || Download paper

  17. Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria. (2023). , Eva ; Vialetto, Elena ; Collias, Daphne ; Beisel, Chase L ; Ruttiger, Ann-Sophie ; Strowig, Till ; Achmedov, Tatjana ; Yu, Jiaqi.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36283-9.

    Full description at Econpapers || Download paper

  18. Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65. (2023). Zhang, Xueli ; Chen, Ronghao ; Li, JU ; Zhao, Dongdong ; Bi, Changhao ; Cheng, Zhihui ; Cao, YU ; Liu, Yajing.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35919-0.

    Full description at Econpapers || Download paper

  19. Development of a versatile nuclease prime editor with upgraded precision. (2023). Ji, Quanjiang ; Zhong, Mingtian ; Yao, Yuan ; Tang, Jin ; Liu, Yao ; Wang, Xin ; Zhang, Guiquan ; Huang, Xingxu ; Sun, Wenjun ; Zhu, Shiqiang.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35870-0.

    Full description at Econpapers || Download paper

  20. TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor. (2022). Bae, Seung Min ; Kim, Minyoung ; Lee, Jungjoon K ; Kwon, Jeonghun ; Jo, Anna.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35743-y.

    Full description at Econpapers || Download paper

  21. PEAC-seq adopts Prime Editor to detect CRISPR off-target and DNA translocation. (2022). Wu, Panfeng ; Ma, Lijia ; Li, Jingjing ; Zhang, Heng ; Lu, Zhike ; Yu, Zhenxing ; Liu, Yingzheng ; Wang, Yingying ; Zhou, Yangfan.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35086-8.

    Full description at Econpapers || Download paper

  22. SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e. (2022). Ligeti, Zoltan ; Krausz, Sarah Laura ; Kulcsar, Peter Istvan ; Welker, Ervin ; Talas, Andras.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34527-8.

    Full description at Econpapers || Download paper

  23. A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies. (2022). Perampalam, Pirunthan ; Hoberecht, Luke ; Fortin, Jean-Philippe ; Lun, Aaron.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34320-7.

    Full description at Econpapers || Download paper

  24. Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells. (2022). Li, MU ; Beaury, Michael ; Sidharta, Mega ; Studer, Lorenz ; Zhong, Aaron ; Wu, Youjun ; Zhao, Xiaolan ; Zhou, Ting.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34045-7.

    Full description at Econpapers || Download paper

  25. ATF4-dependent fructolysis fuels growth of glioblastoma multiforme. (2022). Liu, Ping ; Yang, Fan ; Chen, Chao ; Wang, Bin ; Zhang, Zhenxing ; You, Yongping ; Fang, Shu.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33859-9.

    Full description at Econpapers || Download paper

  26. Marker-free co-selection for successive rounds of prime editing in human cells. (2022). Mayorga, Diana ; Agudelo, Daniel ; Goupil, Claudia ; Loiselle, Andreanne ; Duringer, Alexis ; Doyon, Yannick ; Levesque, Sebastien ; Fiset, Jean-Philippe ; Bouchard, Eva.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33669-z.

    Full description at Econpapers || Download paper

  27. DNA nicks induce mutational signatures associated with BRCA1 deficiency. (2022). Liu, Si-Cheng ; Chen, Ruo-Dan ; Xie, An-Yong ; Huang, Zhi-Cheng ; Feng, Yi-Li ; Yang, Xiao-Ying.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32011-x.

    Full description at Econpapers || Download paper

  28. Multiplex base editing to convert TAG into TAA codons in the human genome. (2022). Yang, Kevin ; Church, George ; Hysolli, Eriona ; Liu, Chenli ; Chen, Anlu ; Casper, Stephen.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31927-8.

    Full description at Econpapers || Download paper

  29. Massively targeted evaluation of therapeutic CRISPR off-targets in cells. (2022). Jessen, Niels ; Yuan, Hao ; Pashkova, Liubov ; Corsi, Giulia I ; Luo, Yonglun ; Lin, Lin ; Church, George M ; Zhou, Yan ; Bolund, Lars ; Xu, Fengping ; Qu, Kunli ; Anthon, Christian ; Liang, Xue ; Liu, Junnian ; Xiang, XI ; Zhong, Jiayan ; Pan, Xiaoguang ; Wang, Jian ; Ma, Tao ; Gorodkin, Jan ; Jiang, Hui ; Han, Peng ; Yang, Huanming.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31543-6.

    Full description at Econpapers || Download paper

  30. Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing. (2022). Malenek, Pela ; Benina, Mojca ; Sever, Matja ; Podgornik, Helena ; Lainek, Duko ; Forstneri, Vida ; Mikoli, Veronika ; Jerala, Roman ; Pean, Peter.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31386-1.

    Full description at Econpapers || Download paper

  31. Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 sites. (2022). Chiarle, Roberto ; Wang, QI ; Burns, Kathleen H ; Tao, Jianli ; Mendez-Dorantes, Carlos.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31322-3.

    Full description at Econpapers || Download paper

  32. Peptide fusion improves prime editing efficiency. (2022). Lin, Lin ; Zanetti, Larissa C ; Fife, James D ; Akinci, Ersin ; Barnum, Danielle ; Sherwood, Richard I ; Cha, Minsun ; Velimirovic, Minja ; Shen, Max W.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31270-y.

    Full description at Econpapers || Download paper

  33. Disease modeling by efficient genome editing using a near PAM-less base editor in vivo. (2022). Mignani, Luca ; Concordet, Jean-Paul ; del Bene, Filippo ; Finazzi, Dario ; Giovannangeli, Carine ; Rosello, Marion ; Mione, Marina C ; Serafini, Malo.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31172-z.

    Full description at Econpapers || Download paper

  34. Multiplex base- and prime-editing with drive-and-process CRISPR arrays. (2022). Gao, Xue ; Yuan, Qichen.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30514-1.

    Full description at Econpapers || Download paper

  35. Cas9-induced large deletions and small indels are controlled in a convergent fashion. (2022). Kosicki, Michael ; Tomberg, Kart ; Steward, Frances ; Allen, Felicity ; Bradley, Allan ; Pan, Yangyang.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30480-8.

    Full description at Econpapers || Download paper

  36. Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies. (2022). Bodai, Zsolt ; Gantz, Valentino M ; Komor, Alexis C ; Bishop, Alena L.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29989-9.

    Full description at Econpapers || Download paper

  37. Therapeutic homology-independent targeted integration in retina and liver. (2022). Llado-Santaeularia, Manel ; Iodice, Carolina ; Filippo, Lucio ; Iuliano, Antonella ; Lyubenova, Hristiana ; Manfredi, Anna ; Piluso, Giulio ; Torella, Annalaura ; Nigro, Vincenzo ; Musacchia, Francesco ; Auricchio, Alberto ; Rossi, Settimio ; Esposito, Federica ; Ferla, Rita ; Surace, Enrico Maria ; Minopoli, Renato ; Pone, Emanuela ; Tornabene, Patrizia ; Marrocco, Elena ; Centrulo, Miriam ; Nusco, Edoardo ; Dellanno, Margherita ; Cacchiarelli, Davide.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29550-8.

    Full description at Econpapers || Download paper

  38. Lupus enhancer risk variant causes dysregulation of IRF8 through cooperative lncRNA and DNA methylation machinery. (2022). Zang, Xiaoli ; Ding, Huihua ; Yang, Wanling ; Xu, Hong ; Ye, Zhizhong ; Zhou, Tian ; Yin, Zhihua ; Yao, Chao ; Zhang, Yutong ; Shen, Nan ; Namjou, Bahram ; Qin, Yuting ; Tang, Yuanjia ; Weirauch, Matthew T ; Wang, Yong-Fei ; Kottyan, Leah C ; Kaufman, Kenneth M ; Guo, YA ; Harley, John B ; Zhu, Xinyi.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29514-y.

    Full description at Econpapers || Download paper

  39. Enhancement of prime editing via xrRNA motif-joined pegRNA. (2022). Huang, Shisheng ; Ji, Quanjiang ; Liu, Jianghuai ; Zhang, Guiquan ; Cheng, Daolin ; Yao, Yuan ; Wang, Xiaolong ; Qu, Shiyuan.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29507-x.

    Full description at Econpapers || Download paper

  40. Phage peptides mediate precision base editing with focused targeting window. (2022). Huang, Shisheng ; Ma, Peixiang ; Yu, Peihong ; Jia, Kun ; Liu, Jia ; Lian, Zhengxing ; Cui, Yan-Ru.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29365-7.

    Full description at Econpapers || Download paper

  41. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. (2022). Wang, Xiao ; Wei, Jia ; Li, Xiaosa ; Chen, Jia ; Sun, Xiaodong ; Han, Wenyan ; Yang, Bei ; Xu, Wenchao ; Gao, Bao-Qing ; Zhou, Lina ; Zhu, Junjie ; Wu, Jing.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29339-9.

    Full description at Econpapers || Download paper

  42. Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing. (2022). Maresca, Marcello ; Barr, Jack ; Plassche, Stijn ; Sienski, Grzegorz ; Li, Songyuan ; Degtev, Dmitrii ; Wimberger, Sandra ; Bestas, Burcu ; Vikovi, Saa ; Hsieh, Pei-Pei ; Mendoza-Garcia, Patricia ; Akrap, Nina ; Firth, Mike ; Peterka, Martin.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28771-1.

    Full description at Econpapers || Download paper

  43. Mutation-specific reporter for optimization and enrichment of prime editing. (2022). Shehata, S ; Kok, G ; Spelier, S A ; Ilcken, E F ; Fuchs, S A ; E. E. S. Nieuwenhuis, ; Stevelink, R ; E. C. M. Nieuwenhuis, ; R. H. J. Houwen, ; Bolhuis, D P ; R. C. M. Rees, ; Beekman, J M ; J. H. L. Baijens, ; Joore, I P ; Schene, I F ; H. P. J. Doef, .
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28656-3.

    Full description at Econpapers || Download paper

  44. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. (2022). Oliveira, G P ; da Silva, Ferreira J ; Arasa-Verge, E A ; Kagiou, C ; Moretton, A ; Jiricny, J ; Loizou, J I ; Timelthaler, G.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28442-1.

    Full description at Econpapers || Download paper

  45. Versioning biological cells for trustworthy cell engineering. (2022). Krasnogor, Natalio ; Pelechova, Lenka ; Hobbs, Leanne ; Tellechea-Luzardo, Jonathan ; Velazquez, Elena ; Lorenzo, Victor ; Woods, Simon.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28350-4.

    Full description at Econpapers || Download paper

  46. The Potential of Novel Gene Editing-Based Approaches in Forages and Rumen Archaea for Reducing Livestock Methane Emissions. (2022). Subedi, Udaya ; Acharya, Surya ; Singer, Stacy D ; Jayawardhane, Kethmi N ; Kader, Kazi ; Poudel, Hari ; Chen, Guanqun.
    In: Agriculture.
    RePEc:gam:jagris:v:12:y:2022:i:11:p:1780-:d:954069.

    Full description at Econpapers || Download paper

  47. Find and cut-and-transfer (FiCAT) mammalian genome engineering. (2021). Jaraba-Wallace, Jessica ; Ivani, Dimitrije ; Oliva, Baldomero ; Sanchez-Mejias, Avencia ; Rahmeh, Amal ; Tagliani, Tommaso ; Pallares-Masmitja, Maria ; Guell, Marc ; Mir-Pedrol, Julia.
    In: Nature Communications.
    RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27183-x.

    Full description at Econpapers || Download paper

  48. Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo. (2021). Namkung, Suk ; Khokhar, Eraj Shafiq ; Maitland, Stacy ; Tsagkaraki, Emmanouela ; Wolfe, Scot A ; Wang, Dan ; Nelson, Samantha ; Pai, Athma A ; Ibraheim, Raed ; Mir, Aamir ; Javeed, Nida ; Chen, Zexiang ; Cao, Yueying ; Gao, Guangping ; Xue, Wen ; Mintzer, Esther ; Rodriguez, Tomas C ; Sontheimer, Erik J.
    In: Nature Communications.
    RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26518-y.

    Full description at Econpapers || Download paper

  49. BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors. (2021). Kulcsar, Peter I ; Varga, Eva ; Welker, Ervin ; Simon, Dorottya A ; Talas, Andras ; Krausz, Sarah L.
    In: Nature Communications.
    RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26461-y.

    Full description at Econpapers || Download paper

  50. Role of New Plant Breeding Technologies for Food Security and Sustainable Agricultural Development. (2020). Qaim, Matin.
    In: Applied Economic Perspectives and Policy.
    RePEc:wly:apecpp:v:42:y:2020:i:2:p:129-150.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 19:27:12 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.