create a website

Future hydrogen economies imply environmental trade-offs and a supply-demand mismatch. (2024). Terlouw, Tom ; McKenna, Russell ; Rosa, Lorenzo ; Bauer, Christian.
In: Nature Communications.
RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51251-7.

Full description at Econpapers || Download paper

Cited: 5

Citations received by this document

Cites: 74

References cited by this document

Cocites: 33

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Mechanochemical ammonia synthesis enhanced by silicon nitride as a defect-inducing physical promoter. (2025). Li, Changqing ; Baek, Jong-Beom ; Han, Sang Soo ; Jang, Boo-Jae ; Seo, Jeong-Min ; Kim, Sooyeon ; Lee, Se Jung ; Guan, Runnan.
    In: Nature Communications.
    RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60715-3.

    Full description at Econpapers || Download paper

  2. Green energy and steel imports reduce Europe’s net-zero infrastructure needs. (2025). Hampp, Johannes ; Neumann, Fabian ; Brown, Tom.
    In: Nature Communications.
    RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60652-1.

    Full description at Econpapers || Download paper

  3. The role of low carbon fuels towards net-zero in integrated assessment models and energy system models: A critical review. (2025). Liu, Zipeng ; Zhang, Meixi ; Bauer, Christian ; McKenna, Russell.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:215:y:2025:i:c:s1364032125002813.

    Full description at Econpapers || Download paper

  4. Development strategies for green hydrogen, green ammonia, and green methanol in transportation. (2025). Li, Chengjiang ; Hao, Qianwen ; Zhang, Wei ; Wang, Shiyuan ; Yang, Jing.
    In: Renewable Energy.
    RePEc:eee:renene:v:246:y:2025:i:c:s096014812500566x.

    Full description at Econpapers || Download paper

  5. Insurer green financing for a supply chain under cap-and-trade regulation: a capped call contingent claim analysis. (2024). Chang, Ching-Hui ; Lin, Jyh-Horng ; Lu, Tinghui.
    In: Palgrave Communications.
    RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-04033-x.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 1–15 (2018).
    Paper not yet in RePEc: Add citation now
  2. Antonini, C. et al. Hydrogen from wood gasification with CCS–a techno-environmental analysis of production and use as transport fuel. Sustain. Energy Fuels 5, 2602–2621 (2021).
    Paper not yet in RePEc: Add citation now
  3. Antonini, C. et al. Hydrogen production from natural gas and biomethane with carbon capture and storage - A technoenvironmental analysis. Sustain. Energy Fuels 4, 2967–2986 (2020).
    Paper not yet in RePEc: Add citation now
  4. Bauer, C. et al. Electricity storage and hydrogen: Technologies, costs and environmental burdens. Technical Report (PSI, Paul Scherrer Institute, 2021).
    Paper not yet in RePEc: Add citation now
  5. Bauer, C. et al. On the climate impacts of blue hydrogen production. Sustain. Energy Fuels 6, 66–75 (2022).
    Paper not yet in RePEc: Add citation now
  6. Baumstark, L. et al. REMIND2.1: Transformation and innovation dynamics of the energy-economic system within climate and sustainability limits. Geosci. Model Dev. Discussions, 14, 6571–6603 (2021).
    Paper not yet in RePEc: Add citation now
  7. Blanco, H. Hydrogen production in 2050: how much water will 74EJ need? https://energypost.eu/hydrogen-production-in-2050-howmuch -water-will-74ej-need/ (2021).
    Paper not yet in RePEc: Add citation now
  8. Buchhorn, M. et al. Copernicus global land service: Land cover 100m: collection 3: epoch 2019: Globe. Version V3.0.1 https://doi. org/10.5281/zenodo.3939050 (2020).
    Paper not yet in RePEc: Add citation now
  9. D’Odorico, P. et al. The global food-energy-water nexus. Rev. Geophys. 56, 456–531 (2018).
    Paper not yet in RePEc: Add citation now
  10. Deutz, S. & Bardow, A. Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nat. Energy 6, 203–213 (2021).

  11. Dorris, C., Lu, E., Park, S. & Toro, F. High-Purity Oxygen Production Using Mixed Ionic-Electronic Conducting Sorbents Senior Design Reports (CBE) (Department of Chemical, Biomolecular Engineering School of Engineering, and Applied Science University of Pennsylvania, 2016).
    Paper not yet in RePEc: Add citation now
  12. Electricity Production Data — World Electricity Statistics — Enerdata, https://yearbook.enerdata.net/electricity/world-electricityproduction -statistics.html (2023).
    Paper not yet in RePEc: Add citation now
  13. European Commission. A hydrogen strategy for a climate-neutral Europe [COM(2020) 301 final]. Technical Report (European Commission, 2020).
    Paper not yet in RePEc: Add citation now
  14. European Commission. Developer Environmental Footprint (EF), https://eplca.jrc.ec.europa.eu/LCDN/developerEF.xhtml (2022).
    Paper not yet in RePEc: Add citation now
  15. Gabrielli, P. et al. Net-zero emissions chemical industry in a world of limited resources. One Earth 6, 682–704 (2023).
    Paper not yet in RePEc: Add citation now
  16. Gerloff, N. Comparative Life-Cycle-Assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production. J. Energy Storage 43, 102759 (2021).
    Paper not yet in RePEc: Add citation now
  17. Gielen, D. Critical minerals for the energy transition (International Renewable Energy Agency, 2021).
    Paper not yet in RePEc: Add citation now
  18. Global lithium production 2022, Statista, https://www.statista.com/ statistics/606684/world-production-of-lithium/, (2023).
    Paper not yet in RePEc: Add citation now
  19. Guo, J. et al. Hydrogen production from the air. Nat. Commun. 13, 5046 (2022).

  20. Hansen, A. C. & Thorn, P. PV potential and potential PV rent in European regions. ENSPAC Research Papers on Transitions to a Green Economy (ENSPAC, 2013).
    Paper not yet in RePEc: Add citation now
  21. He, L. & Rosa, L. Solutions to agricultural green water scarcity under climate change. PNAS Nexus 2, pgad117 (2023).
    Paper not yet in RePEc: Add citation now
  22. Helbig, C., Schrijvers, D. & Hool, A. Selecting and prioritizing material resources by criticality assessments. One Earth 4, 339–345 (2021).
    Paper not yet in RePEc: Add citation now
  23. Henriksen, M. S. et al. Tradeoffs in life cycle water use and greenhouse gas emissions of hydrogen production pathways. Int. J. Hydrogen Energy, 49, 1221–1234 (2023).
    Paper not yet in RePEc: Add citation now
  24. Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. 109, 3232–3237 (2012).
    Paper not yet in RePEc: Add citation now
  25. Howarth, R. W. & Jacobson, M. Z. How green is blue hydrogen? Energy Sci. Eng. 9, 1676–1687 (2021).
    Paper not yet in RePEc: Add citation now
  26. Huijbregts, M. A. et al. ReCiPe 2016: A harmonized life cycle impact assessment method at midpoint and enpoint level - Report 1: characterization (National Institute for Public Health and the Environment, 2016).
    Paper not yet in RePEc: Add citation now
  27. IEA. Global Hydrogen Review 2021. Technical Report (IEA, 2021).
    Paper not yet in RePEc: Add citation now
  28. IEA. Global Hydrogen Review 2022. Technical Report (IEA, 2022).
    Paper not yet in RePEc: Add citation now
  29. IEA. Global Hydrogen Review 2023. Retrieved Oct 3rd, 2023. https://www.iea.org/reports/global-hydrogen-review-2023 (2023).
    Paper not yet in RePEc: Add citation now
  30. IEA. Towards hydrogen definitions based on their emissions intensity. https://www.iea.org/reports/towards-hydrogen-definitionsbased -on-their-emissions-intensity (2023).
    Paper not yet in RePEc: Add citation now
  31. International Energy Agency. The Role of Critical Minerals in Clean Energy Transitions. Technical Report (International Energy Agency, 2021).
    Paper not yet in RePEc: Add citation now
  32. International Renewable Energy Agency (IRENA). Scaling up electrolysers to meet the 1.5 C climate goal (International Renewable Energy Agency, 2020).
    Paper not yet in RePEc: Add citation now
  33. International Renewable Energy Agency (IRENA). The cost of financing for renewable power (International Renewable Energy Agency, 2023).
    Paper not yet in RePEc: Add citation now
  34. Jin, Y., Behrens, P., Tukker, A. & Scherer, L. Water use of electricity technologies: A global meta-analysis. Renew. Sustain. Energy Rev. 115, 109391 (2019).

  35. Junne, T., Wulff, N., Breyer, C. & Naegler, T. Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt. Energy 211, 118532 (2020).

  36. Khan, M. et al. Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy Environ. Sci. 14, 4831–4839 (2021).
    Paper not yet in RePEc: Add citation now
  37. Kiemel, S. et al. Critical materials for water electrolysers at the example of the energy transition in Germany. Int. J. Energy Res. 45, 9914–9935 (2021).
    Paper not yet in RePEc: Add citation now
  38. Koch, J. & Leimbach, M. SSP economic growth projections: Major changes of key drivers in integrated assessment modelling. Ecol. Econ. 206, 107751 (2023).

  39. Li, L., Chen, G., Shao, Z. & Huang, H. Progress on smart integrated systems of seawater purification and electrolysis. Energy Environ. Sci. 16, 4994–5002 (2023).
    Paper not yet in RePEc: Add citation now
  40. Liang, Y., Kleijn, R., Tukker, A. & van der Voet, E. Material requirements for low-carbon energy technologies: a quantitative review. Renew. Sustain. Energy Rev. 161, 112334 (2022). Article https://doi.org/10.1038/s41467-024-51251-7 Nature Communications| (2024)15:7043 71. Alves Dias, P., Bobba, S., Carrara, S. & Plazzotta, B. The role of rare earth elements in wind energy and electric mobility (European Commission, 2020).

  41. Liu, J. et al. Water scarcity assessments in the past, present, and future. Earths Fut. 5, 545–559 (2017).
    Paper not yet in RePEc: Add citation now
  42. Longden, T., Beck, F. J., Jotzo, F., Andrews, R. & Prasad, M. ‘Clean’ hydrogen? – Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen. Appl. Energy 266, 118145 (2021).

  43. Maggio, G., Squadrito, G. & Nicita, A. Hydrogen and medical oxygen by renewable energy based electrolysis: A green and economically viable route. Appl. Energy 306, 117993 (2022).

  44. McKenna, R. et al. High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs. Renew. Energy 182, 659–684 (2022).
    Paper not yet in RePEc: Add citation now
  45. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016). Article https://doi.org/10.1038/s41467-024-51251-7 Nature Communications| (2024)15:7043 25. Shukla, P. R., et al. (eds.) Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Technical Report (IPCC, 2022).
    Paper not yet in RePEc: Add citation now
  46. Mutel, C. Brightway: An open source framework for Life Cycle Assessment. J. Open Source Softw. 2, 236 (2017).
    Paper not yet in RePEc: Add citation now
  47. Mutel, C. ReCiPe 2016 LCIA method for Brightway, https://github. com/brightway-lca/bw_recipe_2016 (2020). Accessed October 6, 2022.
    Paper not yet in RePEc: Add citation now
  48. Nijnens, J., Behrens, P., Kraan, O., Sprecher, B. & Kleijn, R. Energy transition will require substantially less mining than the current fossil system. Joule 7, 2408–2413 (2023).
    Paper not yet in RePEc: Add citation now
  49. Office of Fossil Energy. Hydrogen Strategy: Enabling A Low-Carbon Economy. Technical Report (Department of Energy, 2020).
    Paper not yet in RePEc: Add citation now
  50. Olaitan, D., Bertagni, M. & Porporato, A. The water footprint of hydrogen production. Sci. Total Environ. 927, 172384 (2024).
    Paper not yet in RePEc: Add citation now
  51. Panagopoulos, A. & Haralambous, K.-J. Environmental impacts of desalination and brine treatmentChallenges and mitigation measures. Mar. Pollut. Bull. 161, 111773 (2020).
    Paper not yet in RePEc: Add citation now
  52. PIK. Price of Hydrogen: CAPEX Data, https://h2foroveralls. shinyapps.io/H2Dash/ (2023).
    Paper not yet in RePEc: Add citation now
  53. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. change 42, 153–168 (2017).
    Paper not yet in RePEc: Add citation now
  54. Rosa, L. & Gabrielli, P. Energy and food security implications of transitioning synthetic nitrogen fertilizers to net-zero emissions. Environ. Res. Lett. 18, 014008 (2022).
    Paper not yet in RePEc: Add citation now
  55. Rosa, L. & Mazzotti, M. Potential for hydrogen production from sustainable biomass with carbon capture and storage. Renew. Sustain. Energy Rev. 157, 112123 (2022).

  56. Rosa, L., Reimer, J. A., Went, M. S. & D’Odorico, P. Hydrological limits to carbon capture and storage. Nat. Sustain. 3, 658–666 (2020).

  57. Rosa, L., Sanchez, D. L., Realmonte, G., Baldocchi, D. & D’Odorico, P. The water footprint of carbon capture and storage technologies. Renew. Sustain. Energy Rev. 138, 110511 (2021).

  58. Saad, D., Terlouw, T., Sacchi, R. & Bauer, C. Life Cycle Economic and Environmental Assessment of Producing Synthetic Jet Fuel Using CO2/Biomass Feedstocks. Environ. Sci. Technol. 58, 9158–9174 (2024).
    Paper not yet in RePEc: Add citation now
  59. Sacchi, R. et al. PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models. Renew. Sustain. Energy Rev. 160, 112311 (2022).

  60. Terlouw, T. et al. Optimal economic and environmental design of multi-energy systems. Appl. Energy 347, 121374 (2023).
    Paper not yet in RePEc: Add citation now
  61. Terlouw, T., Bauer, C., McKenna, R. & Mazzotti, M. Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment. Energy Environ. Sci. 15, 3583–3602 (2022).
    Paper not yet in RePEc: Add citation now
  62. Terlouw, T., Bauer, C., Rosa, L. & Mazzotti, M. Life cycle assessment of carbon dioxide removal technologies: a critical review. Energy Environ. Sci. 14, 1701–1721 (2021).
    Paper not yet in RePEc: Add citation now
  63. Terlouw, T., Treyer, K., Bauer, C. & Mazzotti, M. Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources. Environ. Sci. Technol. 55, 11397–11411 (2021).
    Paper not yet in RePEc: Add citation now
  64. The World Bank 2024. https://datacatalog.worldbank.org/search/ dataset/0038272/World-Bank-Official-Boundaries (2024).
    Paper not yet in RePEc: Add citation now
  65. Tonelli, D. et al. Global land and water limits to electrolytic hydrogen production using wind and solar resources. Nat. Commun. 14, 5532 (2023).

  66. Tsiropoulos, I., Tarvydas, D. & Lebedeva, N. Li-ion batteries for mobility and stationary storage applications (Publications Office of the European Union, Luxembourg, 2018).
    Paper not yet in RePEc: Add citation now
  67. Ueckerdt, F. et al. On the cost competitiveness of blue and green hydrogen. Joule 8, 104–128 (2024).
    Paper not yet in RePEc: Add citation now
  68. Ueckerdt, F. et al. Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nat. Clim. Change 11, 384–393 (2021).

  69. UNEP-WCMC & IUCN. UNEP-WCMC and IUCN, Protected Planet: The World Database on Protected Areas (WDPA) [Online], Cambridge, UK: UNEP-WCMC and IUCN, www.protectedplanet.net (2023).
    Paper not yet in RePEc: Add citation now
  70. UNESCO, UN-Water. United Nations World Water Development Report 2020: Water and Climate Change, Paris, UNESCO. Technical Report (UNESCO, 2020).
    Paper not yet in RePEc: Add citation now
  71. Van der Spek, M. et al. Perspective on the hydrogen economy as a pathway to reach net-zero CO 2 emissions in Europe. Energy Environ. Sci. 15, 1034–1077 (2022).
    Paper not yet in RePEc: Add citation now
  72. Wang, S. et al. Future demand for electricity generation materials under different climate mitigation scenarios. Joule 7, 309–332 (2023).
    Paper not yet in RePEc: Add citation now
  73. Warwick, N. et al. Atmospheric implications of increased Hydrogen use. https://www.gov.uk/government/publications/atmosphericimplications -of-increased-hydrogen-use (2022).
    Paper not yet in RePEc: Add citation now
  74. Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. The role of direct air capture in achieving climate-neutral aviation. (2025). Trndle, Tim ; Patt, Anthony ; Meskaldji, Amir ; Moretti, Christian ; Brazzola, Nicoletta.
    In: Nature Communications.
    RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55482-6.

    Full description at Econpapers || Download paper

  2. A Bench-Scale Demonstration of Direct Air Capture Using an Enhanced Electrochemical System. (2025). Wang, Jinwen ; Gao, Xin ; Berger, Adam ; Omosebi, Ayokunle ; Chen, Tingfei ; Patrick, Aron ; Liu, Kunlei.
    In: Clean Technol..
    RePEc:gam:jcltec:v:7:y:2025:i:2:p:50-:d:1680117.

    Full description at Econpapers || Download paper

  3. Unlocking the economic potential of Direct Air Capture technology: Insights from a component-based learning curve. (2025). Wei, Yi-Ming ; Peng, Song ; Kang, Jia-Ning ; Liu, Lan-Cui ; Zhang, Yunlong ; Yang, BO ; Yu, Bi-Ying ; Liao, Hua.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:215:y:2025:i:c:s0040162525001404.

    Full description at Econpapers || Download paper

  4. Evaluating the suitability of direct air carbon capture and storage in Virginia using geospatial multi-criteria decision analysis. (2025). Salehi, Nafiseh ; Shafiee-Jood, Majid ; Colosi, Lisa M.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003429.

    Full description at Econpapers || Download paper

  5. Environmental tradeoff on integrated carbon capture and in-situ methanation technology. (2025). Wu, C ; Jiang, L ; Huang, Y ; Liu, W ; Yong, J Y ; Zhang, X J.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:208:y:2025:i:c:s136403212400755x.

    Full description at Econpapers || Download paper

  6. Conceptualization and investigations on a cooling-heating co-generation and step-utilization heat pump for efficient direct air capture. (2025). Yang, Hongxing ; Luo, Jielin ; Ye, Gongran ; Xue, Ziqian ; Zhang, Yanling ; Wang, Qin.
    In: Applied Energy.
    RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003964.

    Full description at Econpapers || Download paper

  7. Model-based thermodynamic analysis of direct air capture units in repurposed power plant cooling towers. (2025). Hannes, Jens ; Wirsum, Manfred ; Petersen, Nils Hendrik ; Pehle, Lukas ; Sager, Robert.
    In: Applied Energy.
    RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924020518.

    Full description at Econpapers || Download paper

  8. Wind curtailment powered flexible direct air capture. (2025). Yu, Lijun ; Fujikawa, Shigenori ; Wang, Lun ; Feng, Yuanfan ; Miao, Yihe ; Liu, Yuhang.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924017859.

    Full description at Econpapers || Download paper

  9. Distributed direct air capture of carbon dioxide by synergistic water harvesting. (2024). Qu, Longbing ; Ding, Hui ; Webley, Paul ; Li, Gang Kevin ; Wang, Yongqiang.
    In: Nature Communications.
    RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53961-4.

    Full description at Econpapers || Download paper

  10. Future hydrogen economies imply environmental trade-offs and a supply-demand mismatch. (2024). Terlouw, Tom ; McKenna, Russell ; Rosa, Lorenzo ; Bauer, Christian.
    In: Nature Communications.
    RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51251-7.

    Full description at Econpapers || Download paper

  11. Redox-tunable isoindigos for electrochemically mediated carbon capture. (2024). Zhao, Xunhua ; Li, Xing ; Gu, Luo ; Zhang, Lingyu ; Mathur, Anmol ; Fang, Zhiwei ; Xu, YU ; Liu, Yuanyue.
    In: Nature Communications.
    RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45410-z.

    Full description at Econpapers || Download paper

  12. Challenges in CO2 transportation: Trends and perspectives. (2024). Pedersen, Simon ; Simonsen, Kenneth Rene ; Hansen, Dennis Severin.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123010079.

    Full description at Econpapers || Download paper

  13. Modeling and planning optimization of carbon capture load based on direct air capture. (2024). Zhang, Xueguang ; Du, Caiyi ; Wang, Qian.
    In: Energy.
    RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030615.

    Full description at Econpapers || Download paper

  14. Net-zero life cycle supply chain assessment of heat pump technologies. (2024). Lenny, S C ; Shamoushaki, Moein.
    In: Energy.
    RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028998.

    Full description at Econpapers || Download paper

  15. A holistic approach to refinery decarbonization based on atomic, energy and exergy flow analysis. (2024). Zhao, YI ; Hagi, Hayato ; Marechal, Franois ; Delahaye, Bruno.
    In: Energy.
    RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008892.

    Full description at Econpapers || Download paper

  16. Modeling, optimization and comparative assessment of power-to-methane and carbon capture technologies for renewable fuel production. (2024). Furst, Oscar ; Deutschmann, Olaf ; Wehrle, Lukas ; Dailly, Julian ; Schmider, Daniel.
    In: Applied Energy.
    RePEc:eee:appene:v:375:y:2024:i:c:s0306261924013552.

    Full description at Econpapers || Download paper

  17. Direct air capture capacity configuration and cost allocation based on sharing mechanism. (2024). Zhang, Xueguang ; Wang, Qian ; Du, Caiyi.
    In: Applied Energy.
    RePEc:eee:appene:v:374:y:2024:i:c:s030626192401420x.

    Full description at Econpapers || Download paper

  18. Towards circular plastics within planetary boundaries. (2023). Bachmann, Marvin ; Hartmann, Jan ; Guillen-Gosalbez, Gonzalo ; Zibunas, Christian ; Bardow, Andre ; Tulus, Victor ; Suh, Sangwon.
    In: Nature Sustainability.
    RePEc:nat:natsus:v:6:y:2023:i:5:d:10.1038_s41893-022-01054-9.

    Full description at Econpapers || Download paper

  19. Modification schemes of efficient sorbents for trace CO2 capture. (2023). Zhang, Yiheng ; Zhu, Xuancan ; Su, Tingyu ; Wang, Liwei.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123003301.

    Full description at Econpapers || Download paper

  20. The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment. (2023). Deutz, Sarah ; Baumgartner, Nils ; Leenders, Ludger ; Shu, David Yang ; Winter, Benedikt Alexander ; Bardow, Andre.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:178:y:2023:i:c:s1364032123001028.

    Full description at Econpapers || Download paper

  21. Review of heating and cooling technologies for buildings: A techno-economic case study of eleven European countries. (2023). Pezzutto, Simon ; Fraboni, Riccardo ; Wilczynski, Eric ; Callegher, Claudio Zandonella ; Mitterrutzner, Benjamin.
    In: Energy.
    RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026464.

    Full description at Econpapers || Download paper

  22. How do variations in ship operation impact the techno-economic feasibility and environmental performance of fossil-free fuels? A life cycle study. (2023). Olsson, Tobias ; Brynolf, Selma ; Grahn, Maria ; Hansson, Julia ; Ellis, Joanne ; Kanchiralla, Fayas Malik.
    In: Applied Energy.
    RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011376.

    Full description at Econpapers || Download paper

  23. Key uncertainties behind global projections of direct air capture deployment. (2023). Moreno-Cruz, Juan ; Schweizer, Vanessa ; Craik, Neil ; Motlaghzadeh, Kasra.
    In: Applied Energy.
    RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008498.

    Full description at Econpapers || Download paper

  24. Automated deep reinforcement learning for real-time scheduling strategy of multi-energy system integrated with post-carbon and direct-air carbon captured system. (2023). Yang, Zaiyue ; Alabi, Tobi Michael ; Lawrence, Nathan P ; Lu, Lin ; Gopaluni, Bhushan R.
    In: Applied Energy.
    RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018906.

    Full description at Econpapers || Download paper

  25. Analysing municipal energy system transformations in line with national greenhouse gas reduction strategies. (2023). McKenna, Russell ; Kleinebrahm, Max ; Weinand, Jann Michael ; Naber, Elias ; Ardone, Armin.
    In: Applied Energy.
    RePEc:eee:appene:v:332:y:2023:i:c:s030626192201772x.

    Full description at Econpapers || Download paper

  26. Material flows and embodied energy of direct air capture: A cradle‐to‐gate inventory of selected technologies. (2023). Simon, Balint.
    In: Journal of Industrial Ecology.
    RePEc:bla:inecol:v:27:y:2023:i:3:p:646-661.

    Full description at Econpapers || Download paper

  27. Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100. (2022). McQueen, Noah ; Harmsen, Mathijs ; Wilcox, Jennifer ; Boer, Harmen-Sytze ; Bardow, Andre ; Qiu, Yang ; Daioglou, Vassilis ; Suh, Sangwon ; Lamers, Patrick.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31146-1.

    Full description at Econpapers || Download paper

  28. Human and planetary health implications of negative emissions technologies. (2022). Tulus, Victor ; Cobo, Selene ; Guillen-Gosalbez, Gonzalo ; Galan-Martin, Angel.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30136-7.

    Full description at Econpapers || Download paper

  29. Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing. (2022). Jing, Yan ; Gordon, Roy G ; Wu, Min ; Aziz, Michael J.
    In: Nature Communications.
    RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29791-7.

    Full description at Econpapers || Download paper

  30. The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges. (2022). del Mar, Maria ; Romero, Inmaculada ; Castro-Galiano, Eulogio ; Ruiz, Encarnacion ; Eliche-Quesada, Dolores ; Galan-Martin, Angel ; Bueno-Rodriguez, Salvador.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122005044.

    Full description at Econpapers || Download paper

  31. From renewable energy to sustainable protein sources: Advancement, challenges, and future roadmaps. (2022). Angelidaki, Irini ; Zhang, Yifeng ; Liu, Hongbin ; Yan, Shuiping ; Marami, Hadis ; Elyasi, Seyedeh Nashmin ; Mitraka, Georgia-Christina ; Tsapekos, Panagiotis ; Valverde-Perez, Borja ; Kougias, Panagiotis G ; Khoshnevisan, Benyamin ; Xu, Mingyi ; Carbajales-Dale, Michael ; Ji, Long ; He, LI ; Sillman, Jani.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:157:y:2022:i:c:s1364032121013034.

    Full description at Econpapers || Download paper

  32. The impact of climate on solvent-based direct air capture systems. (2022). McCoy, Sean T ; An, Keju ; Farooqui, Azharuddin.
    In: Applied Energy.
    RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011588.

    Full description at Econpapers || Download paper

  33. Synergies between Direct Air Capture Technologies and Solar Thermochemical Cycles in the Production of Methanol. (2021). Monnerie, Nathalie ; Prats-Salvado, Enric ; Sattler, Christian.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:16:p:4818-:d:610220.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-01 01:07:04 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.