- Akaike, H.: 1974, A new look at statistical model identification, IEEE Transactions on Automatic Control AC–19, 716–723.
Paper not yet in RePEc: Add citation now
- Amado, C. and Laakkonen, H.: 2013, Modeling time-varying volatility in financial returns: Evidence from the bond markets, in N. Haldrup, M. Meitz and P. Saikkonen (eds), Essays in nonlinear time series econometrics, Oxford University Press, Oxford, pp. 139–160.
Paper not yet in RePEc: Add citation now
Amado, C. and Teräsvirta, T.: 2008, Modelling conditional and unconditional heteroskedasticity with smoothly time-varying structure, SSE/EFI Working Paper Series in Economics and Finance 691, Stockholm School of Economics.
Amado, C. and Teräsvirta, T.: 2013, Modelling volatility by variance decomposition, Journal of Econometrics 175, 153–165.
- Amado, C. and Teräsvirta, T.: 2014a, Conditional correlation models of autoregressive conditional heteroscedasticity with nonstationary GARCH equations, Journal of Business and Economic Statistics 32, 69–87.
Paper not yet in RePEc: Add citation now
- Amado, C. and Teräsvirta, T.: 2014b, Modelling changes in the unconditional variance of long stock return series, Journal of Empirical Finance 25, 15–35.
Paper not yet in RePEc: Add citation now
Amado, C. and Teräsvirta, T.: 2017, Specification and testing of multiplicative timevarying GARCH models with applications, Econometric Reviews 36, 421–446.
Amado, C., Silvennoinen, A. and Teräsvirta, T.: 2017, Modelling and forecasting WIG20 daily returns, Central European Journal of Economic Modelling and Econometrics 9, 173–200.
Andersen, T. G. and Bollerslev, T.: 1998, Deutsche Mark-Dollar volatility intraday activity patters, macroeconomic announcements, and longer run dependencies, Journal of Finance 53, 219–265.
Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P.: 2003, Modeling and forecasting realized volatility, Econometrica 71, 579–625.
- Andersen, T. G., Davis, R. A., Kreiss, J.-P. and Mikosch, T. (eds): 2009, Handbook of Financial Time Series, Springer, Berlin.
Paper not yet in RePEc: Add citation now
Ashgarian, H., Hou, A. J. and Javed, F.: 2013, The importance of the macroeconomic variables in forecasting stock return variance: A GARCH-MIDAS approach, Journal of Forecasting 32, 600–612.
- Audrino, F. and Bühlmann, P.: 2003, Volatility estimation with functional gradient descent for very high-dimensional financial time series, Journal of Computational Finance 6, 65–89.
Paper not yet in RePEc: Add citation now
Audrino, F. and Bühlmann, P.: 2009, Splines for financial volatility, Journal of the Royal Statistical Society, Series B 71, 655–670.
Baillie, R. T., Bollerslev, T. and Mikkelsen, H. O.: 1996, Fractionally integrated generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 74, 3– 30.
- Bauwens, L., Hafner, C. and Laurent, S. (eds): 2012, Handbook of volatility models and their applications, Wiley, New York.
Paper not yet in RePEc: Add citation now
Bauwens, L., Hafner, C. M. and Pierret, D.: 2013, Multivariate volatility modeling of electricity futures, Journal of Applied Econometrics 28, 743–761.
Bauwens, L., Laurent, S. and Rombouts, J. V. K.: 2006, Multivariate GARCH models: A survey, Journal of Applied Econometrics 21, 79–109.
Berben, R.-P. and Jansen, W. J.: 2005, Comovement in international equity markets: A sectoral view, Journal of International Money and Finance 24, 832–857.
Bollerslev, T., Chou, R. Y. and Kroner, K. F.: 1992, ARCH modeling in finance. A review of the theory and empirical evidence, Journal of Econometrics 52, 5–59.
Bollerslev, T.: 1986, Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 31, 307–327.
Bollerslev, T.: 1990, Modelling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model, Review of Economics and Statistics 72, 498–505.
- Box, G. E. P., Jenkins, G. M., Reinsel, G. C. and Ljung, G. M.: 2015, Time Series Analysis: Forecasting and Control, fifth edn, Wiley, New York.
Paper not yet in RePEc: Add citation now
Brownlees, C. T. and Gallo, G. M.: 2010, Comparison of volatility measures: A risk management perspective, Journal of Financial Econometrics 8, 29–56.
Catani, P., Teräsvirta, T. and Yin, M.: 2017, A Lagrange multiplier test for testing the adequacy of constant conditional correlation GARCH model, Econometric Reviews 36, 599–621.
Chen, W.-P., Choudhry, T. and Wu, C.-C.: 2013, The extreme value in crude oil and US dollar markets, Journal of International Money and Finance 36, 191–210.
Colacito, R., Engle, R. F. and Ghysels, E.: 2011, A component model for dynamic correlations, Journal of Econometrics 164, 45–59.
Connor, G. and Suurlaht, A.: 2013, Dynamic stock market covariances in the Eurozone, Journal of International Money and Finance 37, 353–370.
Conrad, C. and Loch, K.: 2015, Anticipating long-term stock market volatility, Journal of Applied Econometrics 30, 1090–1114.
Conrad, C. and Schienle, M.: 2017, Testing for an omitted multiplicative long-term component in GARCH models, Working paper, Heidelberg University, Available at SSRN: http://dx.doi.org/10.2139/ssrn.2631976.
Conrad, C., Loch, K. and Rittler, D.: 2014, On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets, Jounal of Empirical Finance 29, 26–40.
- Dahlhaus, R.: 1997, Fitting time series models to nonstationary processes, The Annals of Statistics 25, 1–37.
Paper not yet in RePEc: Add citation now
de Almeida, D., Hotta, L. K. and Ruiz, E.: 2018, MGARCH models: Trade-off between feasibility and flexibility, International Journal of Forecasting 34, 45–63.
Diebold, F. X. and Mariano, R. S.: 1995, Comparing predictive accuracy, Journal of Business and Economic Statistics 13, 253–263.
- Eilers, P. H. C. and Marx, B. D.: 1996, Flexible smoothing with B-splines, Statistical Science 11, 89–121.
Paper not yet in RePEc: Add citation now
Engle, R. F. (ed.): 1995, ARCH Selected readings, Advanced Texts in Econometrics, Oxford University Press, Oxford.
- Engle, R. F. and Bollerslev, T.: 1986, Modelling the persistence of conditional variances, Econometric Reviews 5, 1–50.
Paper not yet in RePEc: Add citation now
Engle, R. F. and Kelly, B.: 2012, Dynamic equicorrelation, Journal of Business and Economic Statistics 30, 212–228.
Engle, R. F. and Kroner, K. F.: 1995, Multivariate simultaneous generalized ARCH, Econometric Theory 11, 122–150.
Engle, R. F. and Rangel, J. G.: 2008, The spline-GARCH model for low-frequency volatility and its global macroeconomic causes, Review of Financial Studies 21, 1187–1222.
Engle, R. F. and Russell, J. R.: 1998, Autoregressive Conditional Duration: A new model for irregularly spaced transaction data, Econometrica 66, 1127–1162.
Engle, R. F., Ghysels, E. and Sohn, B.: 2013, Stock market volatility and macroeconomic fundamentals, Review of Economics and Statistics 95, 776–797.
Engle, R. F.: 1982, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica 50, 987–1007.
Engle, R. F.: 2002, Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroscedasticity models, Journal of Business and Economic Statistics 20, 339–350.
Feng, Y. and McNeil, A. J.: 2008, Modelling of scale change, periodicity and conditional heteroskedasticity in return volatility, Economic Modelling 25, 850–867.
Feng, Y.: 2004, Simultaneously modeling conditional heteroskedasticity and scale change, Econometric Theory 20, 563–596.
Feng, Y.: 2006, A local dynamic conditional correlation model, MPRA Paper 1592, http://mpra.ub.uni-muenchen.de/1592.
Gallant, A. R.: 1981, On the bias in flexible functional forms and an essentially unbiased form. The Fourier flexible form, Jounal of Econometrics 15, 211–245.
Gallant, A. R.: 1984, The Fourier flexible form, American Journal of Agricultural Economics 66, 204–208.
Girardin, E. and Joyeux, R.: 2013, Macro fundamentals as a source of stock market volatility in China: A GARCH-MIDAS approach, Economic Modelling 34, 59–68.
Glosten, L. W., Jagannathan, R. and Runkle, D. E.: 1993, On the relation between the expected value and the volatility of the nominal excess return on stocks, Journal of Finance 48, 1779–1801.
- Good, I. J. and Gaskins, R. A.: 1971, Nonparametric roughness penalties for probability densities, Biometrika 58, 255–277.
Paper not yet in RePEc: Add citation now
- GourieÌroux, C.: 1997, ARCH Models and Financial Applications, Springer, Berlin.
Paper not yet in RePEc: Add citation now
Hafner, C. M. and Linton, O.: 2010, Efficient estimation of a multivariate multiplicative volatility model, Journal of Econometrics 159, 55–73.
- Han, H. and Kristensen, D.: 2017, Semiparametric multiplicative GARCH-X model: Adopting economic variables to explain volatility, Unpublished paper.
Paper not yet in RePEc: Add citation now
Hansen, P. R., Lunde, A. and Nason, J. M.: 2011, The model confidence set, Econometrica 79, 453–497.
- Knight, F.: 1921, Risk, uncertainty, and profit, Houghton Mifflin, Boston.
Paper not yet in RePEc: Add citation now
Lamoureux, C. G. and Lastrapes, W. G.: 1990, Persistence in variance, structural change and the GARCH model, Journal of Business and Economic Statistics 8, 225–234.
Li, D., Zhang, X., Zhu, K. and Ling, S.: 2018, The ZD-GARCH model: A new way to study heteroscedasticity, Journal of Econometrics 202, 1–17.
Lin, S. and Li, W. K.: 1997, Diagnostic checking of multivariate nonlinear time series with multivariate ARCH errors, Journal of Time Series Analysis 18, 447–464.
Lundbergh, S. and Teräsvirta, T.: 2002, Evaluating GARCH models, Journal of Econometrics 110, 417–435.
- Luukkonen, R., Saikkonen, P. and Teräsvirta, T.: 1988, Testing linearity against smooth transition autoregressive models, Biometrika 75, 491–499.
Paper not yet in RePEc: Add citation now
Mandelbrot, B.: 1963, The variation of certain speculative prices, Journal of Business 36, 394–419.
Mazur, B. and PipienÌ, M.: 2012, On the empirical importance of periodicity in the volatility of financial returns - time varying GARCH as a second order APC(2) process, Central European Journal of Economic Modelling and Econometrics 4, 95– 116.
Mikosch, T. and Stărică, C.: 2004, Nonstationarities in financial time series, the longrange dependence, and the IGARCH effects, Review of Economics and Statistics 86, 378–390.
Mishra, S., Su, L. and Ullah, A.: 2010, Semiparametric estimator of time series conditional variance, Journal of Business and Economic Statistics 28, 256–274.
Nelson, D. B.: 1991, Conditional heteroskedasticity in asset returns: A new approach, Econometrica 59, 347–370.
Opschoor, A., van Dijk, D. and van der Wel, M.: 2014, Predicting volatility and correlations with financial conditions indexes, Jounal of Empirical Finance 29, 435–447.
Osiewalski, J. and Pajor, A.: 2009, Bayesian analysis for Hybrid MSF-SBEKK models of multivariate volatility, Central European Journal of Economic Modelling and Econometrics 1, 179–202.
- Osiewalski, J.: 2009, New hybrid models of multivariate volatility (a Bayesian perspective) , Przeglad Statystycny 56, 15–22.
Paper not yet in RePEc: Add citation now
- Rangel, J. G. and Engle, R. F.: 2013, The Factor-Spline-GARCH model for high and low frequency correlations, Journal of Business & Economic Statistics 30, 109–124.
Paper not yet in RePEc: Add citation now
- Rissanen, J.: 1978, Modeling by shortest data description, Automatica 14, 465–471.
Paper not yet in RePEc: Add citation now
RodrıÌguez-Poo, J. M. and Linton, O.: 2001, Nonparametric factor analysis of residual time series, TEST 10, 161–182.
- Schwarz, G.: 1978, Estimating the dimension of a model, Annals of Statistics 6, 461– 464.
Paper not yet in RePEc: Add citation now
Sharpe, W. F.: 1964, Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance 19, 425–442.
- Silvennoinen, A. and Teräsvirta, T.: 2005, Multivariate autoregressive conditional heteroskedasticity with smooth transitions in conditional correlations, SSE/EFI Working Papers in Economics and Finance 577, Stockholm School of Economics.
Paper not yet in RePEc: Add citation now
- Silvennoinen, A. and Teräsvirta, T.: 2009a, Modelling multivariate autoregressive conditional heteroskedasticity with the double smooth transition conditional correlation GARCH model, Journal of Financial Econometrics 7, 373–411.
Paper not yet in RePEc: Add citation now
- Silvennoinen, A. and Teräsvirta, T.: 2009b, Multivariate GARCH models, in T. G. Andersen, R. A. Davis, J.-P. Kreiss and T. Mikosch (eds), Handbook of Financial Time Series, Springer, New York, pp. 201–229.
Paper not yet in RePEc: Add citation now
Silvennoinen, A. and Teräsvirta, T.: 2015, Modeling conditional correlations of asset returns: A smooth transition approach, Econometric Reviews 34, 174–197.
Silvennoinen, A. and Teräsvirta, T.: 2017, Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model, Research Paper 2017-28, CREATES, Aarhus University, Aarhus.
Song, P. X., Fan, Y. and Kalbfleisch, J. D.: 2005, Maximization by parts in likelihood inference, Journal of the American Statistical Association 100, 1145–1158.
- Taylor, S. J.: 1986, Modelling Financial Time Series, Wiley, Chichester.
Paper not yet in RePEc: Add citation now
Teräsvirta, T., Tjøstheim, D. and Granger, C. W. J.: 2010, Modelling Nonlinear Economic Time Series, Oxford University Press, Oxford.
- Teräsvirta, T.: 2009, An introduction to univariate GARCH models, in T. G. Andersen, R. A. Davis, J.-P. Kreiss and T. Mikosch (eds), Handbook of Financial Time Series, Springer, New York, pp. 17–42.
Paper not yet in RePEc: Add citation now
- Tsay, R.: 2010, Analysis of financial time series, third edn, Wiley, Hoboken, NJ.
Paper not yet in RePEc: Add citation now
Tse, Y. K. and Tsui, K. C.: 2002, A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations, Journal of Business and Economic Statistics 20, 351–362.
van Bellegem, S. and von Sachs, R.: 2004, Forecasting economic time series with unconditional time-varying variance, International Journal of Forecasting 20, 611–627.
- van Bellegem, S.: 2012, Locally stationary volatility models, in L. Bauwens, C. Hafner and S. Laurent (eds), Wiley Handbook in Financial Engineering and Econometrics: Volatility Models and Their Applications, Wiley, New York, pp. 249–268.
Paper not yet in RePEc: Add citation now
Wang, F. and Ghysels, E.: 2015, Econometric analysis of volatility component models, Econometric Theory 31, 362–393.
Zhang, X., Feng, Y. and Peitz, C.: 2017, A general class of SemiGARCH models based on the Box-Cox transformation, Working Paper 2017-06, Center for International Economics, Paderborn University.
- Zivot, E.: 2009, Practical issues in the analysis of univariate GARCH models, in T. G. Andersen, R. A. Davis, J.-P. Kreiss and T. Mikosch (eds), Handbook of Financial Time Series, Springer, Berlin, pp. 113–155.
Paper not yet in RePEc: Add citation now