- AAEE. Asociación Argentina de EnergÃa Eólica. Uruguay—UTE analiza construir planta para almacenar excedentes de eólica. August 7th, 2014.
Paper not yet in RePEc: Add citation now
- Ahir R, Chakraborty B, . A novel cluster-specific analysis framework for demand-side management and net metering using smart meter data. Sustain Energy Grids Netw 2022; 31: 100771.
Paper not yet in RePEc: Add citation now
Al Khafaf N, Rezaei A, Amani A, ,, et al., Impact of battery storage on residential energy consumption: An Australian case study based on smart meter data. Renewable Energy 2022; 182: 390–400.
Andersen F, Gunkel P, Jacobsen H, ,, et al., Residential electricity consumption and household characteristics: An econometric analysis of Danish smart-meter data. Energy Econ 2021; 100: 105341.
Batalla-Bejerano J, Trujillo-Baute E, Villa-Arrieta M, . Smart meters and consumer behaviour: Insights from the empirical literature. Energy Policy 2020; 144: 111610.
- Chavat J, Nesmachnow S, . Analysis of residential electricity consumption by areas in Uruguay. In: Nesmachnow S, Hernández Callejo L, (eds) Smart Cities. ICSC-CITIES 2020. Communications in Computer and Information Science 2021, vol 1359. Cham: Springer, 2021, pp. 42–57.
Paper not yet in RePEc: Add citation now
- Chavat J, Nesmachnow S, . Data analysis approach for characterizing residential energy consumption based on statistics of household appliances ownership. In: Conference: 1st International Workshop on Advanced Information and Computation Technologies and Systems at Irkutsk, Russia, 2021.
Paper not yet in RePEc: Add citation now
- Chavat J, Nesmachnow S, Graneri J, ,, et al., ECD-UY, detailed household electricity consumption dataset of Uruguay. Sci Data 2022; 9: 21.
Paper not yet in RePEc: Add citation now
Chen H, Zhang B, Wang Z, . Hidden inequality in household electricity consumption: Measurement and determinants based on large-scale smart meter data. China Econ Rev 2022; 71: 101739.
- Cui Y, Yan R, Sharma R, ,, et al., Realizing multifractality of smart meter data for household characteristic prediction. Int J Electr Power Energy Syst 2022; 139: 108003.
Paper not yet in RePEc: Add citation now
- Czétány L, Vámos V, Horváth M, ,, et al., Development of electricity consumption profiles of residential buildings based on smart meter data clustering. Energy Build 2021; 252: 111376.
Paper not yet in RePEc: Add citation now
- El Comercio. La tarifa cero por uso de cocinas a inducción se mantiene este 2021. January 21st, 2021. https://www.elcomercio.com/actualidad/negocios/tarifa-cero-cocinas-induccion-ecuador.html. https://www.elcomercio.com/actualidad/negocios/tarifa-cero-cocinas-induccion-ecuador.html .
Paper not yet in RePEc: Add citation now
- Hair J, Anderson R, Tatham R, y, , et al., Análisis Multivariante. 5th ed. Madrid: Prentice Hall, 1999.
Paper not yet in RePEc: Add citation now
- INE. Instituto Nacional de EstadÃstica de Uruguay. Bases Censales Censo Nacional, 2011. https://www.ine.gub.uy/web/guest/censos1 (Accessed 10 February 2022). https://www.ine.gub.uy/web/guest/censos1 .
Paper not yet in RePEc: Add citation now
- Jorge G, . EnergÃas renovables en América Latina: análisis socio-técnico del desarrollo de la energÃa eólica en el Uruguay. (Master Thesis). Bernal, Argentina: Universidad Nacional de Quilmes, 2020. https://ridaa.unq.edu.ar/handle/20.500.11807/2642. https://ridaa.unq.edu.ar/handle/20.500.11807/2642 .
Paper not yet in RePEc: Add citation now
- Laureiro P, . Determinantes del consumo de energÃa eléctrica del sector residencial en Uruguay. Serie Documentos de investigación estudiantil 2018, DIE 05/18 FCS. UdelaR.
Paper not yet in RePEc: Add citation now
- Lazzari L, Mor G, Cipriano J, ,, et al., User behaviour models to forecast electricity consumption of residential customers based on smart metering data. Energy Reports 2022; 8: 3680–3691.
Paper not yet in RePEc: Add citation now
- Leiria D, Johra H, Marszal-Pomianowska A, ,, et al., Using data from smart energy meters to gain knowledge about households connected to the district heating network: A Danish case. Smart Energy 2021; 3: 100035.
Paper not yet in RePEc: Add citation now
- McKenna E, Few J, Webborn E, , et al., Explaining daily energy demand in British housing using linked smart meter and socio-technical data in a bottom-up statistical model. Energy Build 2022; 258: 111845.
Paper not yet in RePEc: Add citation now
- MIEM. Balance Energético Nacional. Uruguay. Ministerio de Industria, EnergÃa y MinerÃa, 2023. https://ben.miem.gub.uy/. https://ben.miem.gub.uy/ .
Paper not yet in RePEc: Add citation now
- Neale A, Kummert M, Bernier M, . Discriminant analysis classification of residential electricity smart meter data. Energy Build 2022; 258: 111823.
Paper not yet in RePEc: Add citation now
- Oh S, Haberl J, Baltazar J, . Analysis methods for characterizing energy saving opportunities from home automation devices using smart meter data. Energy Build 2020; 216: 109955.
Paper not yet in RePEc: Add citation now
- Olivares-Rojas J, Reyes-Archundia E, Gutiérrez-Gnecchi J, ,, et al., A multi-tier architecture for data analytics in smart metering systems. Simul Model Pract Theory 2020; 102: 102024.
Paper not yet in RePEc: Add citation now
- ReportLinker. Global Smart Meters Market. Growth, Trends, Forecasts (2020–2025). Report, Reportlinker, 2020.
Paper not yet in RePEc: Add citation now
- Roach C, . Estimating electricity impact profiles for building characteristics using smart meter data and mixed models. Energy Build 2020; 211: 109686.
Paper not yet in RePEc: Add citation now
Tang W, Wang H, Lee X, ,, et al., Machine learning approach to uncovering residential energy consumption patterns based on socioeconomic and smart meter data. Energy 2022; 240: 122500.
- Wang F, Lu X, Chang X, ,, et al., Household profile identification for behavioral demand response: A semi-supervised learning approach using smart meter data. Energy 2022; 238 B: 121728.
Paper not yet in RePEc: Add citation now
Westermann P, Deb C, Schlueter A, ,, et al., Unsupervised learning of energy signatures to identify the heating system and building type using smart meter data. Appl Energy 2020; 264: 14715.