- Baker F. B. , Kim H. S. , (2004). Item response theory: Parameter estimation techniques (2nd ed.). New York, NY: Marcel Dekker.
Paper not yet in RePEc: Add citation now
- Bradley R. A. , Gart J. J. , (1962). The asymptotic properties of ML estimators when sampling from associated populations. Biometrika, 49, 205–213.
Paper not yet in RePEc: Add citation now
Chang H. H. , (1996). The asymptotic posterior normality of the latent trait for polytomous IRT models. Psychometrika, 61, 445–463.
Chang H. H. , Stout W. , (1993). The asymptotic posterior normality of the latent trait in an IRT model. Psychometrika, 58, 37–52.
- Cox D. R. , Hinkley D. V. , (1974). Theoretical statistics. London, England: Chapman and Hall.
Paper not yet in RePEc: Add citation now
- Darling-Hammond L. , Adamson F. , (2010). Beyond basic skills: The role of performance assessment in achieving 21st century standards of learning (Tech. Rep.). Stanford, CA: Stanford University, Stanford Center for Opportunity Policy in Education.
Paper not yet in RePEc: Add citation now
- Finkelman M. , Weiss D. J. , Kim-Kang G. , (2010). Item selection and hypothesis testing for the adaptive measurement of change. Applied Psychological Measurement, 34, 238–254.
Paper not yet in RePEc: Add citation now
Glas C. A. W. , Dagohoy A. V. T. , (2007). A person fit test for IRT models for polytomous items. Psychometrika, 72, 159–180.
- Haberman S. J. , von Davier M. , Lee Y. , (2008). Comparison of multidimensional item response models: Multivariate normal ability distributions versus multivariate polytomous distributions (ETS Research Report No. RR-08-45) . Princeton, NJ: ETS.
Paper not yet in RePEc: Add citation now
- Klauer K. C. , (1990). Asymptotic properties of the ML estimator of the ability parameter when item parameters are known. Methodika, 4, 23–26.
Paper not yet in RePEc: Add citation now
- Kolen M. J. , Lee W. , (2011). Psychometric properties of scores on mixed-format tests. Educational Measurement: Issues and Practice, 30, 15–24.
Paper not yet in RePEc: Add citation now
- Lehmann E. L. , (1999). Elements of large-sample theory. New York, NY: Springer.
Paper not yet in RePEc: Add citation now
- Lehmann E. L. , Casella G. , (1998). Theory of point estimation (2nd ed.). New York, NY: Springer-Verlag.
Paper not yet in RePEc: Add citation now
- Lissitz R. W. , Hou X. , Slater S. , (2012). The contribution of constructed response items to large scale assessment: measuring and understanding their impact. Journal of Applied Testing Technology, 13, 1–50.
Paper not yet in RePEc: Add citation now
Lord F. M. , (1983). Unbiased estimators of ability parameters, of their variance, and of their parallel-forms reliability. Psychometrika, 48, 233–245.
Magis D. , (2015). A note on weighted likelihood and Jeffreys modal estimation of proficiency levels in polytomous item response models. Psychometrika, 80, 200–204.
- Muraki E. , (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159–176.
Paper not yet in RePEc: Add citation now
- Nordberg L. , (1980). Asymptotic normality of maximum likelihood estimators based on independent, unequally distributed observations in exponential family models. Scandinavian Journal of Statistics, 7, 27–32.
Paper not yet in RePEc: Add citation now
Ogasawara H. , (2012). Asymptotic expansions for the ability estimator in item response theory. Computational Statistics, 27, 661–683.
Ogasawara H. , (2013). Asymptotic expansions for the Bayes and pseudo Bayes estimators of ability in item response theory. Journal of Multivariate Analysis, 114, 359–377.
Philippou A. , Roussas G. G. , (1975). Asymptotic normality of the maximum likelihood estimate in the independent not identically distributed case. Annals of the Institute of Statistical Mathematics, 27, 45–55.
- R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing.
Paper not yet in RePEc: Add citation now
- Reckase M. D. , (2009). Multidimensional item response theory. New York, NY: Springer.
Paper not yet in RePEc: Add citation now
- Samejima F. , (1998, 4). Expansion of Warm’s weighted likelihood estimator of ability for the three-parameter logistic model to general discrete responses. Paper presented at the annual meeting of the National Council of Measurement in Education, San Diego, CA.
Paper not yet in RePEc: Add citation now
Segall D. O. , (1996). Multidimensional adaptive testing. Psychometrika, 61, 331–354.
- Sinharay S , . (2015). Asymptotically correct standardization of person-fit statistics beyond dichotomous items. Psychometrika. (Published through Online First). doi:10.1007/s11336-015-9465-x.
Paper not yet in RePEc: Add citation now
- Sinharay S. , Wan P. , Choi S. W. , Kim D. , (2015). Assessing individual-level impact of interruptions during online testing. Journal of Educational Measurement, 52, 80–105.
Paper not yet in RePEc: Add citation now
- Tao J. , Shi N. , Chang H. , (2012). Item-weighted likelihood method for ability estimation in tests composed of both dichotomous and polytomous items. Journal of Educational and Behavioral Statistics, 37, 298–315.
Paper not yet in RePEc: Add citation now
- Wainer H. , Vevea J. L. , Camacho F. , Reeve B. B. , Rosa K. , Nelson L. , (2001). Augmented scores—“borrowing strength†to compute scores based on small numbers of items. In Thissen D. , Wainer H. , (Eds.), Test scoring (pp. 343–387). Hillsdale, NJ: Lawrence Erlbaum.
Paper not yet in RePEc: Add citation now
Wang C. , (2015). On latent trait estimation in multidimensional compensatory item response models. Psychometrika, 80, 428–449.
Warm T. A. , (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427–450.