create a website

A Journey of Business Analytics in Improving Supply Chain Performance: A Systematic Review of Literature. (2024). Chatterjee, Debmallya.
In: Management and Labour Studies.
RePEc:sae:manlab:v:49:y:2024:i:2:p:337-361.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 141

References cited by this document

Cocites: 26

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Adhikari A., , Bisi A., , & Avittathur B., (2020). Coordination mechanism, risk sharing, and risk aversion in a five-level textile supply chain under demand and supply uncertainty. European Journal of Operational Research, 282(1), 93–107.

  2. Arya V., , Sharma P., , Singh A., , & De Silva P. T. M., (2017). An exploratory study on supply chain analytics applied to spare parts supply chain. Benchmarking: An International Journal, 24(6), 1571–1580.
    Paper not yet in RePEc: Add citation now
  3. Aryal A., , Liao Y., , Nattuthurai P., , & Li B., (2020). The emerging big data analytics and IoT in supply chain management: A systematic review. Supply Chain Management: An International Journal, 25(2), 141–156.
    Paper not yet in RePEc: Add citation now
  4. Babiceanu R. F., , & Seker R., (2016). Big Data and virtualization for manufacturing cyber-physical systems: A survey of the current status and future outlook. Computers in industry, 81, 128–137.
    Paper not yet in RePEc: Add citation now
  5. Bala H., , & Venkatesh V., (2017). Employees’ reactions to IT-enabled process innovations in the age of data analytics in healthcare. Business Process Management Journal, 23(3), 671–702.
    Paper not yet in RePEc: Add citation now
  6. Barbosa M. W., , Vicente A. D. L. C., , Ladeira M. B., , & Oliveira M. P. V. D., (2018). Managing supply chain resources with big data analytics: Asystematic review. International Journal of Logistics Research and Applications, 21(3), 177–200.
    Paper not yet in RePEc: Add citation now
  7. Beamon B. M., (1998). Supply chain design and analysis: Models and methods. International Journal of Production Economics, 55(3), 281–294.

  8. Blackburn R., , Lurz K., , Priese B., , Göb R., , & Darkow I. L., (2015). A predictive analytics approach for demand forecasting in the process industry. International Transactions in Operational Research, 22(3), 407–428.
    Paper not yet in RePEc: Add citation now
  9. Bryant R., , Katz R. H., , & Lazowska E. D., (2008). Big-data computing: Creating revolutionary breakthroughs in commerce, science and society. Comput. Commun. Consortium (CCC).
    Paper not yet in RePEc: Add citation now
  10. Chae B. K., , Yang C., , Olson D., , & Sheu C., (2014). The impact of advanced analytics and data accuracy on operational performance: A contingent resource based theory (RBT) perspective. Decision Support Systems, 59, 119–126.
    Paper not yet in RePEc: Add citation now
  11. Chae B. K., (2015). Insights from hashtag# supplychain and Twitter Analytics: Considering Twitter and Twitter data for supply chain practice and research. International Journal of Production Economics, 165, 247–259.

  12. Chakphet T., , Saenpakdee M., , Pongsiri T., , & Jermsittiparsert K., (2020). The role of big data analytics in the relationship among the collaboration types, supply chain management and market performance of Thai manufacturing firms. International Journal of Supply Chain Management, 9(1), 28–36.
    Paper not yet in RePEc: Add citation now
  13. Chan R. Y., , He H., , Chan H. K., , & Wang W. Y., (2012). Environmental orientation and corporate performance: The mediation mechanism of green supply chain management and moderating effect of competitive intensity. Industrial Marketing Management, 41(4), 621–630.
    Paper not yet in RePEc: Add citation now
  14. Chen K., , Li Y., , & Linderman K., (2022). Supply network resilience learning: An exploratory data analytics study. Decision Sciences, 53(1), 8–27.
    Paper not yet in RePEc: Add citation now
  15. Chen Y. J., , & Chien C. F., (2018). An empirical study of demand forecasting of non-volatile memory for smart production of semiconductor manufacturing. International Journal of Production Research, 56(13), 4629–4643.

  16. Choi T. M., , & Zhang T., (2023). Will being an angel bring more harm than good? Altruistic newsvendors with different risk attitudes. European Journal of Operational Research, 305(3), 1153–1165.

  17. Christopher M., (2000). The agile supply chain: Competing in volatile markets. Industrial Marketing Management, 29(1), 37–44.
    Paper not yet in RePEc: Add citation now
  18. Dou Y., , Zhu Q., , & Sarkis J., (2014). Evaluating green supplier development programs with a grey-analytical network process-based methodology. European Journal of Operational Research, 233(2), 420–431.

  19. Fahimnia B., , Sarkis J., , & Davarzani H., (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114.

  20. Farasyn I., , Perkoz K., , & Van de Velde W., (2008). Spreadsheet models for inventory target setting at Procter & Gamble. Interfaces, 38(4), 241–250.

  21. Fattah A., (2014). Going beyond data science toward an analytics ecosystem: Part 3. IBM Data Management Magazine, 3, 8–11.
    Paper not yet in RePEc: Add citation now
  22. Gabler C. B., , Rapp A., , Richey Jr R. G., , & Adams F. G., (2018). Can service climate detract from employee performance? The role of experience in optimizing satisfaction and performance outcomes. Decision Sciences, 49(1), 7–24.
    Paper not yet in RePEc: Add citation now
  23. Galetsi P., , Katsaliaki K., , & Kumar S., (2020). Big data analytics in health sector: Theoretical framework, techniques and prospects. International Journal of Information Management, 50, 206–216.

  24. Galli B. J., , & Ocampo L. A., (2019). Exploring the relationships between continuous improvement and predictive analytics. International Journal of Advanced Operations Management, 11(3), 189–210.
    Paper not yet in RePEc: Add citation now
  25. Ganeshkumar C., , Prabhu M., , & Abdullah N. N., (2019). Business analytics and supply chain performance: Partial least squares-structural equation modeling (PLS-SEM) approach. International Journal of Management and Business Research, 9(1), 91–96.
    Paper not yet in RePEc: Add citation now
  26. Garvey M. D., , Carnovale S., , & Yeniyurt S., (2015). An analytical framework for supply network risk propagation: A Bayesian network approach. European Journal of Operational Research, 243(2), 618–627.

  27. Gavin M., (2019). Business analytics: What it is & why it’s important. Harvard Business School.
    Paper not yet in RePEc: Add citation now
  28. Ghadge A., , Mogale D. G., , Bourlakis M., , Maiyar L. M., , & Moradlou H., (2022). Link between Industry 4.0 and green supply chain management: Evidence from the automotive industry. Computers & Industrial Engineering, 169, 108303.
    Paper not yet in RePEc: Add citation now
  29. Golpîra H., , Khan S. A. R., , & Safaeipour S., (2021). A review of logistics internet-of-things: Current trends and scope for future research. Journal of Industrial Information Integration, 22, 100194.
    Paper not yet in RePEc: Add citation now
  30. Govindan K., , & Popiuc M. N., (2014). Reverse supply chain coordination by revenue sharing contract: A case for the personal computers industry. European Journal of Operational Research, 233(2), 326–336.

  31. Gravili G., , Benvenuto M., , Avram A., , & Viola C., (2018). The influence of the digital divide on big data generation within supply chain management. The International Journal of Logistics Management, 29(2), 592–628.
    Paper not yet in RePEc: Add citation now
  32. Gunasekaran A., , Papadopoulos T., , Dubey R., , Wamba S. F., , Childe S. J., , Hazen B., , & Akter S., (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308–317.
    Paper not yet in RePEc: Add citation now
  33. Gunasekaran A., , Yusuf Y. Y., , Adeleye E. O., , & Papadopoulos T., (2018). Agile manufacturing practices: The role of big data and business analytics with multiple case studies. International Journal of Production Research, 56(1–2), 385–397.

  34. Gupta S., , Bag S., , Modgil S., , de Sousa Jabbour A. B. L., , & Kumar A., (2022). Examining the influence of big data analytics and additive manufacturing on supply chain risk control and resilience: An empirical study. Computers & Industrial Engineering, 172, 108629.
    Paper not yet in RePEc: Add citation now
  35. Gupta S., , Chen H., , Hazen B. T., , Kaur S., , & Gonzalez E. D. S., (2019). Circular economy and big data analytics: A stakeholder perspective. Technological Forecasting and Social Change, 144, 466–474.
    Paper not yet in RePEc: Add citation now
  36. Hahn G. J., , & Packowski J., (2015). A perspective on applications of in-memory analytics in supply chain management. Decision Support Systems, 76, 45–52.
    Paper not yet in RePEc: Add citation now
  37. Hamdan S., , & Cheaitou A., (2017). Dynamic green supplier selection and order allocation with quantity discounts and varying supplier availability. Computers & Industrial Engineering, 110, 573–589.
    Paper not yet in RePEc: Add citation now
  38. Hamilton R. H., , & Sodeman W. A., (2020). The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources. Business Horizons, 63(1), 85–95.

  39. Handfield R., , Jeong S., , & Choi T., (2019). Emerging procurement technology: Data analytics and cognitive analytics. International Journal of Physical Distribution & Logistics Management, 49(10), 972–1002.
    Paper not yet in RePEc: Add citation now
  40. Hausman W., (2004). Supply chain performance metrics. In Harrison T. P., , Lee H. L., , & Neale J. J., (Eds), The practice of supply chain management: Where theory and application converge (pp. 61–73). Springer.
    Paper not yet in RePEc: Add citation now
  41. Hazen B. T., , Weigel F. K., , Ezell J. D., , Boehmke B. C., , & Bradley R. V., (2017). Toward understanding outcomes associated with data quality improvement. International Journal of Production Economics, 193, 737–747.

  42. Hoehle H., , Aloysius J. A., , Chan F., , & Venkatesh V., (2018). Customers’ tolerance for validation in omnichannel retail stores: Enabling logistics and supply chain analytics. The International Journal of Logistics Management, 29(2), 704–722.
    Paper not yet in RePEc: Add citation now
  43. Hofmann E., , & Rutschmann E., (2018). Big data analytics and demand forecasting in supply chains: A conceptual analysis. The International Journal of Logistics Management, 29(2), 739–766.
    Paper not yet in RePEc: Add citation now
  44. Hung J. L., , He W., , & Shen J., (2020). Big data analytics for supply chain relationship in banking. Industrial Marketing Management, 86, 144–153.
    Paper not yet in RePEc: Add citation now
  45. Jamehshooran G. B., , Shaharoun M., , & Haron H. N., (2015). Assessing supply chain performance through applying the SCOR model. International Journal of Supply Chain Management, 4(1), 1–11.
    Paper not yet in RePEc: Add citation now
  46. Jeble S., , Kumari S., , & Patil Y., (2017). Role of big data in decision making. Operations and Supply Chain Management: An International Journal, 11(1), 36–44.
    Paper not yet in RePEc: Add citation now
  47. Jena S. K., , Padhi S. S., , & Cheng T. C. E., (2023). Optimal selection of supply chain financing programmes for a financially distressed manufacturer. European Journal of Operational Research, 306(1), 457–477.

  48. Johnston J., (1972). Econometric methods. McGraw-Hill.
    Paper not yet in RePEc: Add citation now
  49. Kacani J., (2017). Towards knowledge-based flexibility for manufacturing enterprises: With a case study. International Journal of Intelligent Enterprise, 4(3), 204–226.

  50. Kache F., , & Seuring S., (2017). Challenges and opportunities of digital information at the intersection of big data analytics and supply chain management. International Journal of Operations & Production Management, 37(1), 10–36.
    Paper not yet in RePEc: Add citation now
  51. Kamble S. S., , Gunasekaran A., , & Gawankar S. A., (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, 219, 179–194.

  52. Kapoor B., , & Kabra Y., (2014). Current and future trends in human resources analytics adoption. Journal of Cases on Information Technology, 16(1), 50–59.

  53. Kashurnikov S. N., , Sevalnev V. V., , Truntsevsky Y. V., , Cherepanova E. V., , & Berestneva O. G., (2019). E-commerce in supply chain management: Its introduction and prospects in the light industry. International Journal of Supply Chain Management, 8(4), 727–732.
    Paper not yet in RePEc: Add citation now
  54. Kaur R., (2023). Future of business analytics trends in 2023 and beyond. SelectHub. https://www.selecthub.com/business-analytics/business-analytics-trends/.
    Paper not yet in RePEc: Add citation now
  55. Kerdpitak C., , Somjai S., , Aeknarajindawat N., , & Thongrawd C., (2019). Collaborative performance and swift trust in tourism industry of Thailand: Role of big data analytics capability and external supply chain management. International Journal of Supply Chain Management, 8(5), 610–621.
    Paper not yet in RePEc: Add citation now
  56. Khan Z., , & Vorley T., (2017). Big data text analytics: An enabler of knowledge management. Journal of Knowledge Management, 21(1), 18–34.
    Paper not yet in RePEc: Add citation now
  57. Kim R., , Gangolly J., , & Elsas P., (2017). A framework for analytics and simulation of accounting information systems: A Petri net modeling primer. International Journal of Accounting Information Systems, 27, 30–54.

  58. Kohavi R., , Rothleder N. J., , & Simoudis E., (2002). Emerging trends in business analytics. Communications of the ACM, 45(8), 45–48.
    Paper not yet in RePEc: Add citation now
  59. Kwon I. W. G., , Kim S. H., , & Martin D. G., (2016). Healthcare supply chain management; strategic areas for quality and financial improvement. Technological Forecasting and Social Change, 113, 422–428.
    Paper not yet in RePEc: Add citation now
  60. Lai Y., , Sun H., , & Ren J., (2018). Understanding the determinants of big data analytics (BDA) adoption in logistics and supply chain management: An empirical investigation. The International Journal of Logistics Management, 29(2), 676–703.
    Paper not yet in RePEc: Add citation now
  61. Lee N. C. A., , Wang E. T., , & Grover V., (2020). IOS drivers of manufacturer-supplier flexibility and manufacturer agility. The Journal of Strategic Information Systems, 29(1), 101594.
    Paper not yet in RePEc: Add citation now
  62. Lee S., , Ryu K., , Shin M., , & Cho G. S., (2012). Function and service pattern analysis for facilitating the reconfiguration of collaboration systems. Computers & Industrial Engineering, 62(3), 794–800.
    Paper not yet in RePEc: Add citation now
  63. Li L., , & Jiang L., (2018). Responsive pricing and stock redistribution: Implications for stock balancing and system performance. Journal of the Operational Research Society, 69(7), 1006–1020.

  64. Lim S., , Yim D., , Khuntia J., , & Tanniru M., (2020). A continuous†time Markov chain model-based business analytics approach for estimating patient transition states in online health infomediary. Decision Sciences, 51(1), 181–208.
    Paper not yet in RePEc: Add citation now
  65. Lin C., , & Lin M., (2019). Application of big data in a multicategory product-service system for global logistics support. IEEE Engineering Management Review, 47(4), 108–118.
    Paper not yet in RePEc: Add citation now
  66. Liu L., , Song W., , & Liu Y., (2023). Leveraging digital capabilities toward a circular economy: Reinforcing sustainable supply chain management with Industry 4.0 technologies. Computers & Industrial Engineering, 178, 109113.
    Paper not yet in RePEc: Add citation now
  67. Long Q., (2018). Data-driven decision making for supply chain networks with agent-based computational experiment. Knowledge-Based Systems, 141, 55–66.
    Paper not yet in RePEc: Add citation now
  68. Mandal S., (2018). An examination of the importance of big data analytics in supply chain agility development: A dynamic capability perspective. Management Research Review, 41(10), 1201–1219.
    Paper not yet in RePEc: Add citation now
  69. Mehta A., (2017, October 13). Four types of business analytics to know. Analytics Insight. https://www.analyticsinsight.net/four-types-of-business-analytics-to-know/.
    Paper not yet in RePEc: Add citation now
  70. Melo M. T., , Nickel S., , & Da Gama F. S., (2006). Dynamic multi-commodity capacitated facility location: A mathematical modeling framework for strategic supply chain planning. Computers & Operations Research, 33(1), 181–208.
    Paper not yet in RePEc: Add citation now
  71. Mettler T., , Pinto R., , & Raber D., (2012). An intelligent supply chain design for improving delivery reliability. International Journal of Information Systems and Supply Chain Management, 5(2), 1–20.

  72. Min H., , Lim Y. K., , & Park J. W., (2017). Supply chain analytics for enhancing the maritime security. International Journal of Logistics Systems and Management, 28(2), 164–179.

  73. Min H., , Lim Y. K., , & Park J. W., (2019). An integrated terminal operating system for enhancing the port security. International Journal of Logistics Systems and Management, 34(2), 193–210.

  74. Mishra N., , & Rane S. B., (2019). Prediction and improvement of iron casting quality through analytics and Six Sigma approach. International Journal of Lean Six Sigma, 10(1), 189–210.
    Paper not yet in RePEc: Add citation now
  75. Mula J., , Peidro D., , Díaz-Madroñero M., , & Vicens E., (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377–390.
    Paper not yet in RePEc: Add citation now
  76. Neaga I., , Liu S., , Xu L., , Chen H., , & Hao Y., (2015). Cloud enabled big data business platform for logistics services: A research and development agenda. In Delibašić B., , Dargam F., , Linden I., , Papathanasiou J., , Hernández J. E., , Zaraté P., , Ribeiro R., , & Liu S., (Eds), Decision Support Systems V – Big Data Analytics for Decision Making (pp. 22–33). Springer International Publishing.
    Paper not yet in RePEc: Add citation now
  77. Nguyen T., , Li Z. H. O. U., , Spiegler V., , Ieromonachou P., , & Lin Y., (2018). Big data analytics in supply chain management: A state-of-the-art literature review. Computers & Operations Research, 98, 254–264.
    Paper not yet in RePEc: Add citation now
  78. Nikolopoulos K., , Punia S., , Schäfers A., , Tsinopoulos C., , & Vasilakis C., (2021). Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions. European Journal of Operational Research, 290(1), 99–115.
    Paper not yet in RePEc: Add citation now
  79. O’Donovan P., , Leahy K., , Bruton K., , & O’Sullivan D. T., (2015). Big data in manufacturing: A systematic mapping study. Journal of Big Data, 2, 1–22.
    Paper not yet in RePEc: Add citation now
  80. Omar Y. M., , Minoufekr M., , & Plapper P., (2019). Business analytics in manufacturing: Current trends, challenges and pathway to market leadership. Operations Research Perspectives, 6, 100127.

  81. Ouyang Y., , & Li X., (2010). The bullwhip effect in supply chain networks. European Journal of Operational Research, 201(3), 799–810.

  82. Papadopoulos T., , Gunasekaran A., , Dubey R., , & Fosso Wamba S., (2017). Big data and analytics in operations and supply chain management: Managerial aspects and practical challenges. Production Planning & Control, 28(11–12), 873–876.
    Paper not yet in RePEc: Add citation now
  83. Patil A., , Dwivedi A., , & Moktadir M. A., (2023). Big data-Industry 4.0 readiness factors for sustainable supply chain management: Towards circularity. Computers & Industrial Engineering, 178, 109109.
    Paper not yet in RePEc: Add citation now
  84. Peiris K. D. A., , Jung J., , & Gallupe R. B., (2015). Building and evaluating ESET: A tool for assessing the support given by an enterprise system to supply chain management. Decision Support Systems, 77, 41–54.
    Paper not yet in RePEc: Add citation now
  85. Phulwani P. R., , Kumar D., , & Goyal P., (2020). A systematic literature review and bibliometric analysis of recycling behavior. Journal of Global Marketing, 33(5), 354–376.

  86. Press G., (2013, May 9). A very short history of big data. Forbes. https://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/.
    Paper not yet in RePEc: Add citation now
  87. Qu T., , Zhang J. H., , Chan F. T., , Srivastava R. S., , Tiwari M. K., , & Park W. Y., (2017). Demand prediction and price optimization for semi-luxury supermarket segment. Computers & Industrial Engineering, 113, 91–102.
    Paper not yet in RePEc: Add citation now
  88. Queiroz M. M., , & Telles R., (2018). Big data analytics in supply chain and logistics: An empirical approach. The International Journal of Logistics Management, 29(2), 767–783.
    Paper not yet in RePEc: Add citation now
  89. Rai S., (2019). Big data-real time fact-based decision: The next big thing in supply chain. International Journal of Business Performance and Supply Chain Modelling, 10(3), 253–265.

  90. Raut R. D., , Mangla S. K., , Narwane V. S., , Gardas B. B., , Priyadarshinee P., , & Narkhede B. E., (2019). Linking big data analytics and operational sustainability practices for sustainable business management. Journal of Cleaner Production, 224, 10–24.
    Paper not yet in RePEc: Add citation now
  91. Riahi Y., , Saikouk T., , Gunasekaran A., , & Badraoui I., (2021). Artificial intelligence applications in supply chain: A descriptive bibliometric analysis and future research directions. Expert Systems with Applications, 173, 114702.
    Paper not yet in RePEc: Add citation now
  92. Ritchie B., , & Brindley C., (2009). Effective management of supply chains: Risks and performance. In Wu T., & Blackhurst J. V., (Eds), Managing supply chain risk and vulnerability: Tools and methods for supply chain decision makers (pp. 9–28). Springer.
    Paper not yet in RePEc: Add citation now
  93. Roßmann B., , Canzaniello A., , von der Gracht H., , & Hartmann E., (2018). The future and social impact of big data analytics in supply chain management: Results from a Delphi study. Technological Forecasting and Social Change, 130, 135–149.
    Paper not yet in RePEc: Add citation now
  94. Sahay B. S., , & Ranjan J., (2008). Real time business intelligence in supply chain analytics. Information Management & Computer Security, 16(1), 28–48.
    Paper not yet in RePEc: Add citation now
  95. Salcedo C. A. G., , Hernandez A. I., , Vilanova R., , & Cuartas J. H., (2013). Inventory control of supply chains: Mitigating the bullwhip effect by centralized and decentralized internal model control approaches. European Journal of Operational Research, 224(2), 261–272.

  96. Samavati T., , Badiezadeh T., , & Saen R. F., (2020). Developing double frontier version of dynamic network DEA model: Assessing sustainability of supply chains. Decision Sciences, 51(3), 804–829.
    Paper not yet in RePEc: Add citation now
  97. Sarkar B., , Ganguly B., , Pareek S., , & Cárdenas-Barrón L. E., (2022). A three-echelon green supply chain management for biodegradable products with three transportation modes. Computers & Industrial Engineering, 174, 108727.
    Paper not yet in RePEc: Add citation now
  98. Shafiq A., , Ahmed M. U., , & Mahmoodi F., (2020). Impact of supply chain analytics and customer pressure for ethical conduct on socially responsible practices and performance: An exploratory study. International Journal of Production Economics, 225, 107571.

  99. Sheu J. B., , & Gao X. Q., (2014). Alliance or no alliance: Bargaining power in competing reverse supply chains. European Journal of Operational Research, 233(2), 313–325.

  100. Sheu J. B., (2008). A hybrid neuro-fuzzy analytical approach to mode choice of global logistics management. European Journal of Operational Research, 189(3), 971–986.

  101. Shukla M., , & Tiwari M. K., (2017). Big-data analytics framework for incorporating smallholders in sustainable palm oil production. Production Planning & Control, 28(16), 1365–1377.
    Paper not yet in RePEc: Add citation now
  102. Silva E. S., , Hassani H., , & Madsen D. Ø., (2020). Big data in fashion: Transforming the retail sector. Journal of Business Strategy, 41(4), 21–27.
    Paper not yet in RePEc: Add citation now
  103. Simchi-Levi D., , & Wu M. X., (2018). Powering retailers’ digitization through analytics and automation. International Journal of Production Research, 56(1–2), 809–816.

  104. Singh N. P., , & Singh S., (2019). Building supply chain risk resilience: Role of big data analytics in supply chain disruption mitigation. Benchmarking: An International Journal, 26(7), 2318–2342.
    Paper not yet in RePEc: Add citation now
  105. Singh S. K., , & El-Kassar A. N., (2019). Role of big data analytics in developing sustainable capabilities. Journal of Cleaner Production, 213, 1264–1273.
    Paper not yet in RePEc: Add citation now
  106. Sommanawat K., , Vipaporn T., , & Joemsittiprasert W., (2019). Can big data benefits bridge between data driven supply chain orientation and financial performance? Evidence from manufacturing sector of Thailand. International Journal of Supply Chain Management, 8(5), 597–609.
    Paper not yet in RePEc: Add citation now
  107. Sonka S., (2014). Big data and the ag sector: More than lots of numbers. International Food and Agribusiness Management Review, 17(1), 1–20.

  108. Souza G. C., (2014). Supply chain analytics. Business Horizons, 57(5), 595–605.

  109. Springer M., , & Kim I., (2010). Managing the order pipeline to reduce supply chain volatility. European Journal of Operational Research, 203(2), 380–392.

  110. Srinivasan R., , & Swink M., (2018). An investigation of visibility and flexibility as complements to supply chain analytics: An organizational information processing theory perspective. Production and Operations Management, 27(10), 1849–1867.

  111. Su T. S., (2017). A fuzzy multi-objective linear programming model for solving remanufacturing planning problems with multiple products and joint components. Computers & Industrial Engineering, 110, 242–254.
    Paper not yet in RePEc: Add citation now
  112. Sun G. J., , Liu Y. K., , & Lan Y. F., (2010). Optimizing material procurement planning problem by two-stage fuzzy programming. Computers & Industrial Engineering, 58(1), 97–107.
    Paper not yet in RePEc: Add citation now
  113. Sung S. W., , Jang Y. J., , Hoon Kim J., , & Lee J., (2017). Business analytics for streamlined assort packing and distribution of fashion goods at Kolon Sport. Interfaces, 47(6), 555–573.

  114. Tan T. F., , & Netessine S., (2014). When does the devil make work? An empirical study of the impact of workload on worker productivity. Management Science, 60(6), 1574–1593.

  115. Tandon R., , Chakraborty A., , Srinivasan G., , Shroff M., , Abdullah A., , Shamasundar B., , Sinha R., , Subramanian S., , Hill D., , & Dhore P., (2013). Hewlett Packard: Delivering profitable growth for HPDirect.com using operations research. Interfaces, 43(1), 48–61.

  116. Tawfik G. M., , Dila K. A. S., , Mohamed M. Y. F., , Tam D. N. H., , Kien N. D., , Ahmed A. M., , & Huy N. T., (2019). A step by step guide for conducting a systematic review and meta-analysis with simulation data. Tropical Medicine and Health, 47(1), 1–9.
    Paper not yet in RePEc: Add citation now
  117. Townsend M., , Le Quoc T., , Kapoor G., , Hu H., , Zhou W., , & Piramuthu S., (2018). Real-Time business data acquisition: How frequent is frequent enough? Information & Management, 55(4), 422–429.
    Paper not yet in RePEc: Add citation now
  118. Trkman P., , McCormack K., , De Oliveira M. P. V., , & Ladeira M. B., (2010). The impact of business analytics on supply chain performance. Decision Support Systems, 49(3), 318–327.
    Paper not yet in RePEc: Add citation now
  119. Tseng M. L., , Wu K. J., , Lim M. K., , & Wong W. P., (2019). Data-driven sustainable supply chain management performance: A hierarchical structure assessment under uncertainties. Journal of Cleaner Production, 227, 760–771.
    Paper not yet in RePEc: Add citation now
  120. Vasista T. G. K., , & AlAbdullatif A. M., (2017). Role of electronic customer relationship management in demand chain management: A predictive analytic approach. International Journal of Information Systems and Supply Chain Management, 10(1), 53–67.
    Paper not yet in RePEc: Add citation now
  121. Vera-Baquero A., , Colomo Palacios R., , Stantchev V., , & Molloy O., (2015b). Leveraging big-data for business process analytics. The Learning Organization, 22(4), 215–228.
    Paper not yet in RePEc: Add citation now
  122. Vera-Baquero A., , Colomo-Palacios R., , Molloy O., , & Elbattah M., (2015a). Business process improvement by means of big data based decision support systems: A case study on call centers. International Journal of Information Systems and Project Management, 3(1), 5–26.
    Paper not yet in RePEc: Add citation now
  123. Villegas M. A., , & Pedregal D. J., (2019). Automatic selection of unobserved components models for supply chain forecasting. International Journal of Forecasting, 35(1), 157–169.

  124. Wamba S. F., , & Akter S., (2019). Understanding supply chain analytics capabilities and agility for data-rich environments. International Journal of Operations & Production Management, 39(6/7/8), 887–912.
    Paper not yet in RePEc: Add citation now
  125. Wamba S. F., , Akter S., , Coltman T., , & Ngai E. W. T., (2015). Guest editorial: Information technology-enabled supply chain management. Production Planning & Control, 26(12), 933–944.
    Paper not yet in RePEc: Add citation now
  126. Wang G., , Gunasekaran A., , Ngai E. W., , & Papadopoulos T., (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98–110.

  127. Wang T., , & Wu D., (2020). Data†driven driver dispatching system with allocation constraints and operational risk management for a ride†sharing platform. Decision Sciences, 51(6), 1490–1520.
    Paper not yet in RePEc: Add citation now
  128. Wilkins J., (2018, March 8–10). Data-driven MRO. Plant Engineer.
    Paper not yet in RePEc: Add citation now
  129. Wolfson D., (2012). Going with the flow. IBM Data Management Magazine, 6, A22.
    Paper not yet in RePEc: Add citation now
  130. Wooldridge J. M., (2009). Introductory econometrics: A modern approach. South-Western College Publishing.
    Paper not yet in RePEc: Add citation now
  131. Wu P. J., , & Chaipiyaphan P., (2020). Diagnosis of delivery vulnerability in a logistics system for logistics risk management. The International Journal of Logistics Management, 31(1), 43–58.
    Paper not yet in RePEc: Add citation now
  132. Wu P. J., , & Huang P. C., (2018). Business analytics for systematically investigating sustainable food supply chains. Journal of Cleaner Production, 203, 968–976.
    Paper not yet in RePEc: Add citation now
  133. Xu Z., , Frankwick G. L., , & Ramirez E., (2016). Effects of big data analytics and traditional marketing analytics on new product success: A knowledge fusion perspective. Journal of Business Research, 69(5), 1562–1566.

  134. Yang R., , Yu L., , Zhao Y., , Yu H., , Xu G., , Wu Y., , & Liu Z., (2020). Big data analytics for financial Market volatility forecast based on support vector machine. International Journal of Information Management, 50, 452–462.

  135. Yong-Hak J., (2013). Web of science. Thomson Reuters.
    Paper not yet in RePEc: Add citation now
  136. Yu Y., , Wang X., , Zhong R. Y., , & Huang G. Q., (2017). E-commerce logistics in supply chain management: Implementations and future perspective in furniture industry. Industrial Management & Data Systems, 117(10), 2263–2286.
    Paper not yet in RePEc: Add citation now
  137. Zhan Y., , & Tan K. H., (2020). An analytic infrastructure for harvesting big data to enhance supply chain performance. European Journal of Operational Research, 281(3), 559–574.

  138. Zhang Z., , Xu H., , Chen K., , Zhao Y., , & Liu Z., (2023). Channel mode selection for an e-platform supply chain in the presence of a secondary marketplace. European Journal of Operational Research, 305(3), 1215–1235.

  139. Zhao D., , & Strotmann A., (2015). Analysis and visualization of citation networks. Morgan & Claypool Publishers.
    Paper not yet in RePEc: Add citation now
  140. Zhu S., , Song J., , Hazen B. T., , Lee K., , & Cegielski C., (2018). How supply chain analytics enables operational supply chain transparency: An organizational information processing theory perspective. International Journal of Physical Distribution & Logistics Management, 48(1), 47–68.
    Paper not yet in RePEc: Add citation now
  141. Zhu X., , Cao Y., , Wu J., , Liu H., , & Bei X., (2022). Optimum operational schedule and accounts receivable financing in a production supply chain considering hierarchical industrial status and uncertain yield. European Journal of Operational Research, 302(3), 1142–1154.

Cocites

Documents in RePEc which have cited the same bibliography

  1. Supply chain strategic behavior and coordination with a risk-averse manufacturer under random yield and demand. (2025). Yu, Liangwei ; Tian, Boshi.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:281:y:2025:i:c:s0925527324003499.

    Full description at Econpapers || Download paper

  2. Navigating global supply networks: a strategic framework for resilience in the apparel industry. (2024). Quang, Huy Truong ; le Thi, Huong ; le Anh, Duy Tran ; Nguyen, Duy Tan ; Nayak, Rajkishore ; Nhu-Y Ngoc Hoang, ; George, Majo.
    In: Operations Management Research.
    RePEc:spr:opmare:v:17:y:2024:i:2:d:10.1007_s12063-024-00495-z.

    Full description at Econpapers || Download paper

  3. Multi-period pricing and order decisions for fresh produce with option contracts. (2024). Bai, Yujia ; Jia, Deng ; Wang, Chong ; Chen, Xingyu.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:335:y:2024:i:1:d:10.1007_s10479-023-05515-y.

    Full description at Econpapers || Download paper

  4. A Journey of Business Analytics in Improving Supply Chain Performance: A Systematic Review of Literature. (2024). Chatterjee, Debmallya.
    In: Management and Labour Studies.
    RePEc:sae:manlab:v:49:y:2024:i:2:p:337-361.

    Full description at Econpapers || Download paper

  5. Shipment policy and its impact on coordination of a fashion supply chain under production uncertainty. (2024). Basu, Sumanta ; Alom, Safiul ; Joshi, Raunak.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003697.

    Full description at Econpapers || Download paper

  6. Sourcing decisions with loss aversion under yield and demand randomness. (2023). Weng, Wei ; Wang, Qingwei ; Zheng, Meimei.
    In: OR Spectrum: Quantitative Approaches in Management.
    RePEc:spr:orspec:v:45:y:2023:i:2:d:10.1007_s00291-022-00701-z.

    Full description at Econpapers || Download paper

  7. Climate change adaptation and disaster risk reduction in the garment industry supply chain network. (2023). Bag, Surajit ; Rahman, Muhammad Sabbir ; Christiaan, Jan Harm ; Rogers, Helen ; Srivastava, Gautam.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:171:y:2023:i:c:s1366554523000194.

    Full description at Econpapers || Download paper

  8. A dynamic approach to supply chain reconfiguration and ripple effect analysis in an epidemic. (2023). Brusset, Xavier ; Repetto, Marco ; Ivanov, Dmitry ; la Torre, Davide ; Jebali, Aida.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:263:y:2023:i:c:s0925527323001676.

    Full description at Econpapers || Download paper

  9. Multi-echelon supply chain coordination: Contract sequence and cut-off policies. (2023). Tiwari, Sunil ; Talluri, Srinivas ; Gupta, Rohit ; Biswas, Indranil.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:259:y:2023:i:c:s0925527323000555.

    Full description at Econpapers || Download paper

  10. Weather rebate contracts for different risk attitudes of supply chain members. (2023). Wahab, M. I. M., ; Sarkar, P ; Fang, L.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:311:y:2023:i:1:p:139-153.

    Full description at Econpapers || Download paper

  11. Analysing supply chain coordination mechanisms dealing with repurposing challenges during Covid-19 pandemic in an emerging economy: a multi-layer decision making approach. (2022). Razavi, Seyed Hossein ; Beheshti, Moein ; Rocha-Lona, Luis ; Mahdiraji, Hannan Amoozad ; Kamardi, Aliasghar Abbasi.
    In: Operations Management Research.
    RePEc:spr:opmare:v:15:y:2022:i:3:d:10.1007_s12063-021-00224-w.

    Full description at Econpapers || Download paper

  12. Implications of credit default and yield uncertainty on supply chain’s equilibrium financial strategy. (2022). Zhang, Qian ; Hou, Pengwen ; Wang, Jun.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:315:y:2022:i:1:d:10.1007_s10479-022-04691-7.

    Full description at Econpapers || Download paper

  13. Forecasting Preliminary Order Cost to Increase Order Management Performance: A Case Study in the Apparel Industry. (2022). Ekinci, Yeliz ; Gunsari, Tuzin Akinar ; Kaya, Aysegul.
    In: International Journal of Business Analytics (IJBAN).
    RePEc:igg:jban00:v:9:y:2022:i:5:p:1-15.

    Full description at Econpapers || Download paper

  14. Agricultural Supply Chain Coordination under Weather-Related Uncertain Yield. (2022). Shi, Yan ; Wang, Fulin.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:9:p:5271-:d:803466.

    Full description at Econpapers || Download paper

  15. Coordination of Perishable Product Supply Chains with a Joint Contract under Yield and Demand Uncertainty. (2022). Xu, Xiang ; Chen, Tianwen ; Liu, Changqing.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:19:p:12658-:d:933926.

    Full description at Econpapers || Download paper

  16. Platform-based servitization and business model adaptation by established manufacturers. (2022). Coreynen, Wim ; Matthyssens, Paul ; Shen, Lei ; Tian, Jiamian.
    In: Technovation.
    RePEc:eee:techno:v:118:y:2022:i:c:s0166497221000031.

    Full description at Econpapers || Download paper

  17. Role of big data analytics capabilities to improve sustainable competitive advantage of MSME service firms during COVID-19 – A multi-theoretical approach. (2022). Pereira, Vijay ; Yadav, Rambalak ; Gaur, Jighyasu ; Laker, Benjamin ; Behl, Abhishek.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:148:y:2022:i:c:p:378-389.

    Full description at Econpapers || Download paper

  18. Evaluating the performance of supply chain risk mitigation strategies using network data envelopment analysis. (2022). Narayanan, Sriram ; Talluri, Srinivas ; Kraude, Richard.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:303:y:2022:i:3:p:1168-1182.

    Full description at Econpapers || Download paper

  19. Influenza vaccine supply chain coordination under uncertain supply and demand. (2022). Zhao, Qiuhong ; Lin, QI ; Lev, Benjamin.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:297:y:2022:i:3:p:930-948.

    Full description at Econpapers || Download paper

  20. Cutting out the trusted third party in business-to-business data exchange: A quantitative study on the impact of multi-party computation on firms’ willingness to share sensitive data in supply chains. (2021). Petronia, Masud ; de Reuver, Mark ; Agahari, Wirawan.
    In: 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world.
    RePEc:zbw:itsb21:238001.

    Full description at Econpapers || Download paper

  21. Joint pricing and stocking decisions for a newsvendor problem with loss aversion and reference point effect. (2021). Yu, Yue ; Qiu, Ruozhen ; Sun, Minghe.
    In: Managerial and Decision Economics.
    RePEc:wly:mgtdec:v:42:y:2021:i:2:p:275-288.

    Full description at Econpapers || Download paper

  22. Dynamic Adjustment Mechanism and Differential Game Model Construction of Mask Emergency Supply Chain Cooperation Based on COVID-19 Outbreak. (2021). Zhu, Shufan ; Gui, Ping ; Xie, Kefan.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:3:p:1115-:d:484707.

    Full description at Econpapers || Download paper

  23. Competition and coordination for supply chain networks with random yields. (2021). Jiang, Yujie ; Peng, Yang ; Yan, Xiaoming ; Cheng, T. C. E., .
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:239:y:2021:i:c:s0925527321001808.

    Full description at Econpapers || Download paper

  24. Mean-variance analysis of wholesale price contracts with a capital-constrained retailer: Trade credit financing vs. bank credit financing. (2021). Zhuo, Wenyan ; Talluri, Srinivas ; Shao, Lusheng ; Yang, Honglin.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:294:y:2021:i:2:p:525-542.

    Full description at Econpapers || Download paper

  25. Analysing the risks of adopting circular economy initiatives in manufacturing supply chains. (2021). , Vimal ; Arasu, Thanigai ; Nadeem, Simon Peter ; Ethirajan, Manavalan ; Kandasamy, Jayakrishna ; Kumar, Anil.
    In: Business Strategy and the Environment.
    RePEc:bla:bstrat:v:30:y:2021:i:1:p:204-236.

    Full description at Econpapers || Download paper

  26. Sustainable development: Impacts of consumers risk aversion on remanufacturing model selection and environmental performance. (2020). Deng, Weisheng.
    In: Sustainable Development.
    RePEc:wly:sustdv:v:28:y:2020:i:6:p:1564-1574.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 10:53:59 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.