Andrieu, C., Doucet, A., Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3), 269–342, with discussion.
- Andrieu, C., Lee, A., Vihola, M. (2013). Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers. arXiv, preprint arXiv:1312.6432 .
Paper not yet in RePEc: Add citation now
- Andrieu, C., Roberts, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo computations. Annals of Statistics, 37(2), 697–725.
Paper not yet in RePEc: Add citation now
- Beaumont, M. A. (2003). Estimation of population growth or decline in genetically monitored populations. Genetics, 164(3), 1139–1160.
Paper not yet in RePEc: Add citation now
- Bunch, P., Godsill, S. J. (2013). Particle smoothing algorithms for variable rate models. IEEE Transactions on Signal Processing, 61(7), 1663–1675.
Paper not yet in RePEc: Add citation now
- Carlin, B. P., Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo methods. Journal of the Royal Statistical Society Series B (Statistical Methodology), 57(3), 473–484.
Paper not yet in RePEc: Add citation now
- Carpenter, J., Clifford, P., Fearnhead, P. (1999). An improved particle filter for nonlinear problems. IEE Proceedings, Radar, Sonar and Navigation, 146(1), 2–7.
Paper not yet in RePEc: Add citation now
- Centanni, S., Minozzo, M. (2006a). Estimation and filtering by reversible jump MCMC for a doubly stochastic Poisson model for ultra-high-frequency financial data. Statistical Modelling, 6(2), 97–118.
Paper not yet in RePEc: Add citation now
Centanni, S., Minozzo, M. (2006b). A Monte Carlo approach to filtering for a class of marked doubly stochastic Poisson processes. Journal of the American Statistical Association, 101(476), 1582–1597.
Chopin, N. (2002). A sequential particle filter method for static models. Biometrika, 89(3), 539–552.
Chopin, N., Jacob, P. E., Papaspiliopoulos, O. (2013). SMC $$^{2}$$ 2 : an efficient algorithm for sequential analysis of state space models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(3), 397–426.
Chopin, N., Singh, S. S. (2013). On the particle Gibbs sampler. arXiv, preprint arXiv:1304.1887 .
Dassios, A., Jang, J. (2003). Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity. Finance and Stochastics, 7(1), 73–95.
- Del Moral, P. (1995). Nonlinear filtering using random particles. Theory of Probability and Its Applications, 40(4), 690–701.
Paper not yet in RePEc: Add citation now
- Del Moral, P. (1996). Nonlinear filtering: Interacting particle resolution. Markov Processes and Related Fields, 2(4), 555–580.
Paper not yet in RePEc: Add citation now
- Del Moral, P. (2004). Feynman–Kac formulae: Genealogical and interacting particle systems with applications. Berlin: Springer.
Paper not yet in RePEc: Add citation now
Del Moral, P., Doucet, A., Jasra, A. (2006). Sequential Monte Carlo samplers. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3), 411–436.
- Del Moral, P., Doucet, A., Jasra, A. (2007). Sequential Monte Carlo for Bayesian computation. In J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith, M. West (Eds.), Bayesian statistics 8 (pp. 115–148). USA: Oxford University Press.
Paper not yet in RePEc: Add citation now
- Del Moral, P., Doucet, A., Jasra, A. (2012). On adaptive resampling strategies for sequential Monte Carlo methods. Bernoulli, 18(1), 252–278.
Paper not yet in RePEc: Add citation now
- Douc, R., Cappé, O., Moulines, E. (2005). Comparison of resampling schemes for particle filtering. In Proceedings of the 4th international symposium on image and signal processing and analysis (ISPA 2005) (pp. 64–69). Zagreb, Croatia: IEEE.
Paper not yet in RePEc: Add citation now
- Doucet, A., de Freitas, N., Gordon, N. (Eds.). (2001). Sequential Monte Carlo methods in practice. Statistics for engineering and information science. Berlin: Springer.
Paper not yet in RePEc: Add citation now
- Doucet, A., Johansen, A. M. (2011). A tutorial on particle filtering and smoothing: Fifteen years later. In Crisan, D., Rozovskii, B. (eds). The Oxford handbook of nonlinear filtering, Oxford handbooks (Chap. 24, pp. 656–704). Oxford: Oxford University Press.
Paper not yet in RePEc: Add citation now
- Godsill, S. J. (2001). On the relationship between Markov chain Monte Carlo methods for model uncertainty. Journal of Computational and Graphical Statistics, 10(2), 230–248.
Paper not yet in RePEc: Add citation now
- Godsill, S. J., Vermaak, J. (2004). Models and algorithms for tracking using trans-dimensional sequential Monte Carlo. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing, 2004 (ICASSP’04) (Vol. 3, pp. 976–979).
Paper not yet in RePEc: Add citation now
- Gordon, N. J., Salmond, D. J., Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F, Radar and Signal Processing, 140(2), 107–113.
Paper not yet in RePEc: Add citation now
- Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711–732.
Paper not yet in RePEc: Add citation now
Johansen, A. M., Doucet, A. (2008). A note on auxiliary particle filters. Statistics and Probability Letters, 78(12), 1498–1504.
- Kantas, N., Doucet, A., Singh, S. S., Maciejowski, J. M. (2009). An overview of sequential Monte Carlo methods for parameter estimation in general state-space models. In 15th IFAC symposium on system identification (pp. 774–785).
Paper not yet in RePEc: Add citation now
- Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5(1), 1–25.
Paper not yet in RePEc: Add citation now
- Kitagawa, G. (1998). A self-organizing state-space model. Journal of the American Statistical Association, 93(443), 1203–1215.
Paper not yet in RePEc: Add citation now
- Kong, A., Liu, J. S., Wong, W. H. (1994). Sequential imputations and Bayesian missing data problems. Journal of the American Statistical Association, 89(425), 278–288.
Paper not yet in RePEc: Add citation now
- Lindsten, F., Douc, R., Moulines, E. (2014). Uniform ergodicity of the particle Gibbs sampler. arXiv, preprint arXiv:1401.0683 .
Paper not yet in RePEc: Add citation now
- Lindsten, F., Jordan, M. I., Schön, T. B. (2012). Ancestor sampling for particle Gibbs. In Proceedings of the 2012 conference on neural information processing systems (NIPS), Lake Tahoe, NV, USA.
Paper not yet in RePEc: Add citation now
- Lindsten, F., Schön, T. B. (2012). On the use of backward simulation in the particle Gibbs sampler. In Proceedings of the 37th IEEE international conference on acoustics, speech, and signal processing (ICASSP), Kyoto, Japan.
Paper not yet in RePEc: Add citation now
- Lindsten, F., Schön, T. B. (2013). Backward simulation methods for Monte Carlo statistical inference. Foundations and Trends in Machine Learning, 6(1), 1–143.
Paper not yet in RePEc: Add citation now
- Liu, J. S., Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association, 93(443), 1032–1044.
Paper not yet in RePEc: Add citation now
Martin, J. S., Jasra, A., McCoy, E. (2013). Inference for a class of partially observed point process models. Annals of the Institute of Statistical Mathematics, 65(3), 413–437.
- Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing, 11(2), 125–139.
Paper not yet in RePEc: Add citation now
- Pitt, M. K., Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association, 94(446), 590–599.
Paper not yet in RePEc: Add citation now
Poyiadjis, G., Doucet, A., Singh, S. S. (2011). Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika, 98(1), 65–80.
- Rao, V., Teh, Y. W. (2012). Fast MCMC sampling for Markov jump processes and continuous time Bayesian networks. arXiv, preprint arXiv:1202.3760 .
Paper not yet in RePEc: Add citation now
Van Dyk, D. A., Park, T. (2008). Partially collapsed Gibbs samplers: theory and methods. Journal of the American Statistical Association, 103(482), 790–796.
- Whiteley, N. (2010). Contribution to the discussion on ‘Particle Markov chain Monte Carlo methods’ by Andrieu, C., Doucet, A., and Holenstein, R. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3), 306–307.
Paper not yet in RePEc: Add citation now
- Whiteley, N., Andrieu, C., Doucet, A. (2010). Efficient Bayesian inference for switching state-space models using discrete particle Markov chain Monte Carlo methods. Bristol University Statistics Research Report, 10, 04.
Paper not yet in RePEc: Add citation now
- Whiteley, N., Johansen, A. M., Godsill, S. J. (2011). Monte Carlo filtering of piecewise deterministic processes. Journal of Computational and Graphical Statistics, 20(1), 119–139.
Paper not yet in RePEc: Add citation now