- Aghabozorgi, S., Shirkhorshidi, A. S., & Wah, T. Y. (2015). Time-series clustering—A decade review. Information Systems, 53, 16–38.
Paper not yet in RePEc: Add citation now
Ai, C., Chatrath, A., & Song, F. (2006). On the comovement of commodity prices. American Journal of Agricultural Economics, 88(3), 574–588.
- Amendola, A., Niglio, M., & Vitale, C. (2009). Statistical properties of threshold models. Communications in Statistics Theory and Methods, 38(15), 2479–2497.
Paper not yet in RePEc: Add citation now
Bai, J., & Ng, S. (2004). A panic attack on unit roots and cointegration. Econometrica, 72(4), 1127–1177.
Bastos, J. A., & Caiado, J. (2014). Clustering financial time series with variance ratio statistics. Quantitative Finance, 14(12), 2121–2133.
- Batista, G. E., Wang, X., & Keogh E. J. (2011). A complexity-invariant distance measure for time series. In Proceedings of the 2011 SIAM international conference on data mining (pp. 699–710). SIAM.
Paper not yet in RePEc: Add citation now
Ben-David, I., Franzoni, F., & Moussawi, R. (2012). Hedge fund stock trading in the financial crisis of 2007–2009. Review of Financial Studies, 25(1), 1–54.
Bernanke, B. S., Boivin, J., & Eliasz, P. (2005). Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach. Quarterly Journal of Economics, 120(1), 387–422.
- Berndt, D. J., & Clifford, J. (1994). Using dynamic time warping to find patterns in time series. In KDD workshop, Seattle, WA, vol. 10, pp. 359–370.
Paper not yet in RePEc: Add citation now
Brandmaier, A. M. (2015). pdc: An R package for complexity-based clustering of time series. Journal of Statistical Software, 67(5), 1–23.
Byrne, J. P., Fazio, G., & Fiess, N. (2013). Primary commodity prices: Co-movements, common factors and fundamentals. Journal of Development Economics, 101, 16–26.
Caiado, J., Crato, N., & Peña, D. (2006). A periodogram-based metric for time series classification. Computational Statistics & Data Analysis, 50(10), 2668–2684.
- Casado, D. (2010). Classification techniques for time series and functional data. Ph.D. thesis, Universidad Carlos III de Madrid.
Paper not yet in RePEc: Add citation now
Castellano, R., & D’Ecclesia, R. L. (2013). CDS volatility: The key signal of credit quality. Annals of Operations Research, 205(1), 89–107.
- Chan, K. S. (1993). Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. The Annals of Statistics, 21(1), 520–533.
Paper not yet in RePEc: Add citation now
Charles, A., Darné, O., Diebolt, C., & Ferrara, L. (2015). A new monthly chronology of the us industrial cycles in the prewar economy. Journal of Financial Stability, 17, 3–9.
- Chen, C. W., So, M. K., & Liu, F. C. (2011). A review of threshold time series models in finance. Statistics and Its Interface, 4(2), 167–181.
Paper not yet in RePEc: Add citation now
Chen, S. L., Jackson, J., Kim, H., & Resiandini, P. (2014a). What drives commodity prices? American Journal of Agricultural Economics, 96(5), 1455–1468.
Chen, Y. C., Turnovsky, S. J., & Zivot, E. (2014b). Forecasting inflation using commodity price aggregates. Journal of Econometrics, 183(1), 117–134.
Cheng, I., & Xiong, W. (2014). Financialization of commodity markets. Annual Review of Financial Economics, 6, 419–941.
- Chouakria, A. D., & Nagabhushan, P. N. (2007). Adaptive dissimilarity index for measuring time series proximity. Advances in Data Analysis and Classification, 1(1), 5–21.
Paper not yet in RePEc: Add citation now
- Cilibrasi, R., & Vitányi, P. M. (2005). Clustering by compression. IEEE Transactions on Information theory, 51(4), 1523–1545.
Paper not yet in RePEc: Add citation now
DÃaz, S. P., & Vilar, J. A. (2010). Comparing several parametric and nonparametric approaches to time series clustering: A simulation study. Journal of Classification, 27(3), 333–362.
de Nicola, F., De Pace, P., & Hernandez, M. A. (2016). Co-movement of major energy, agricultural, and food commodity price returns: A time-series assessment. Energy Economics, 57, 28–41.
Fan, J., & Zhang, W. (2004). Generalised likelihood ratio tests for spectral density. Biometrika, 91(1), 195–209.
Fernandez, V. (2015). Influence in commodity markets: Measuring co-movement globally. Resources Policy, 45, 151–164.
Ferraresi, T., Roventini, A., & Fagiolo, G. (2015). Fiscal policies and credit regimes: A TVAR approach. Journal of Applied Econometrics, 30(7), 1047–1072.
Frankel, J. A. (2006). The effect of monetary policy on real commodity prices. National Bureau of Economic Research: Tech. rep.
- Fu, T. C. (2011). A review on time series data mining. Engineering Applications of Artificial Intelligence, 24(1), 164–181.
Paper not yet in RePEc: Add citation now
Furlong, F., Ingenito, R., et al. (1996). Commodity prices and inflation. Economic Review-Federal Reserve Bank of San Francisco, pp. 27–47.
Giorgino, T., et al. (2009). Computing and visualizing dynamic time warping alignments in R: The dtw package. Journal of Statistical Software, 31(7), 1–24.
- Golay, X., Kollias, S., Stoll, G., Meier, D., Valavanis, A., & Boesiger, P. (1998). A new correlation-based fuzzy logic clustering algorithm for FMRI. Magnetic Resonance in Medicine, 40(2), 249–260.
Paper not yet in RePEc: Add citation now
Gonzalo, J., & Pitarakis, J. Y. (2002). Estimation and model selection based inference in single and multiple threshold models. Journal of Econometrics, 110(2), 319–352.
Hamilton, J. D. (2016). Macroeconomic regimes and regime shifts. National Bureau of Economic Research: Tech. rep.
Hansen, B. E. (1997). Inference in TAR models. Studies in Nonlinear Dynamics & Econometrics, 2(1), 1–14.
- Hansen, B. E. (2011). Threshold autoregression in economics. Statistics and Its Interface, 4(2), 123–127.
Paper not yet in RePEc: Add citation now
- Kakizawa, Y., Shumway, R. H., & Taniguchi, M. (1998). Discrimination and clustering for multivariate time series. Journal of the American Statistical Association, 93(441), 328–340.
Paper not yet in RePEc: Add citation now
- Kalpakis, K., Gada, D., & Puttagunta, V. (2001). Distance measures for effective clustering of ARIMA time-series. In ICDM 2001, Proceedings IEEE international conference on data mining (pp 273–280). IEEE.
Paper not yet in RePEc: Add citation now
- Keogh, E., Chakrabarti, K., Pazzani, M., & Mehrotra, S. (2001). Dimensionality reduction for fast similarity search in large time series databases. Knowledge and Information Systems, 3(3), 263–286.
Paper not yet in RePEc: Add citation now
- Keogh, E., Lonardi, S., & Ratanamahatana, C. A. (2004). Towards parameter-free data mining. In Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 206–215). ACM.
Paper not yet in RePEc: Add citation now
Kilian, L. (2008). The economic effects of energy price shocks. Journal of Economic Literature, 46(4), 871–909.
Lescaroux, F. (2009). On the excess co-movement of commodity prices note about the role of fundamental factors in short-run dynamics. Energy Policy, 37(10), 3906–3913.
- Liao, T. W. (2005). Clustering of time series data: A survey. Pattern Recognition, 38(11), 1857–1874.
Paper not yet in RePEc: Add citation now
Lin, E. M., Sun, E. W., & Yu, M. T. (2016). Systemic risk, financial markets, and performance of financial institutions. Annals of Operations Research, 1–25. doi: 10.1007/s10479-016-2113-8 .
- Lin, J., Keogh, E., Lonardi, S., & Chiu, B. (2003). A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery (pp. 2–11). ACM.
Paper not yet in RePEc: Add citation now
Maharaj, E. A. (1996). A significance test for classifying ARMA models. Journal of Statistical Computation and Simulation, 54(4), 305–331.
- Maharaj, E. A. (2000). Cluster of time series. Journal of Classification, 17(2), 297–314.
Paper not yet in RePEc: Add citation now
Matesanz, D., Torgler, B., Dabat, G., & Ortega, G. J. (2014). Co-movements in commodity prices: A note based on network analysis. Agricultural Economics, 45(S1), 13–21.
Montero, P., & Vilar, J. A. (2014). Tsclust: An R package for time series clustering. Journal of Statistical Software, 62(1), 1–43.
- Ng, A. Y., Jordan, M. I., Weiss, Y., et al. (2002). On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems, 2, 849–856.
Paper not yet in RePEc: Add citation now
Peña, D., Galeano, P., et al. (2001). Multivariate analysis in vector time series. Tech. rep., Universidad Carlos III de Madrid. Departamento de EstadÃstica.
Piccolo, D. (1990). A distance measure for classifying ARIMA models. Journal of Time Series Analysis, 11(2), 153–164.
Pindyck, R. S. (2004). Volatility and commodity price dynamics. Journal of Futures Markets, 24(11), 1029–1047.
Pindyck, R. S., & Rotemberg, J. J. (1990). The excess co-movement of commodity prices. The Economic Journal, 100(403), 1173–1198.
Poncela, P., Senra, E., & Sierra, L. P. (2014). Common dynamics of nonenergy commodity prices and their relation to uncertainty. Applied Economics, 46(30), 3724–3735.
Rossen, A. (2015). What are metal prices like? Co-movement, price cycles and long-run trends. Resources Policy, 45, 255–276.
Sensoy, A., Hacihasanoglu, E., & Nguyen, D. K. (2015). Dynamic convergence of commodity futures: Not all types of commodities are alike. Resources Policy, 44, 150–160.
Steen, M., & Gjolberg, O. (2013). Are commodity markets characterized by herd behaviour? Applied Financial Economics, 23(1), 79–90.
- Tang, K., & Xiong, W. (2012). Index investment and the financialization of commodities. Financial Analysts Journal, 68(5), 54–74.
Paper not yet in RePEc: Add citation now
Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B, 63(2), 411–423.
- Tong, H. (1990). Non-linear time series: A dynamical system approach. Oxford: Oxford University Press.
Paper not yet in RePEc: Add citation now
- Tong, H., & Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data. Journal of the Royal Statistical Society, 42(3), 245–292.
Paper not yet in RePEc: Add citation now
Tsai, C. L. (2015). How do us stock returns respond differently to oil price shocks pre-crisis, within the financial crisis, and post-crisis? Energy Economics, 50, 47–62.
Vacha, L., & Barunik, J. (2012). Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis. Energy Economics, 34(1), 241–247.
- Vilar, J. A., & Pértega, S. (2004). Discriminant and cluster analysis for gaussian stationary processes: Local linear fitting approach. Journal of Nonparametric Statistics, 16(3–4), 443–462.
Paper not yet in RePEc: Add citation now
Virbickaite, A., Ausin, M. C., & Galeano, P. (2016). A Bayesian non-parametric approach to asymmetric dynamic conditional correlation model with application to portfolio selection. Computational Statistics & Data Analysis, 100, 814–829.
- Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395–416.
Paper not yet in RePEc: Add citation now
Wiggins, S., & Etienne, X. L. (2017). Turbulent times: Uncovering the origins of us natural gas price fluctuations since deregulation. Energy Economics, 64, 196–205.
- Zhang, H., Ho, T. B., Zhang, Y., & Lin, M. S. (2006). Unsupervised feature extraction for time series clustering using orthogonal wavelet transform. Informatica, 30(3), 305–319.
Paper not yet in RePEc: Add citation now
- Zhu, Y., Yang, F., & Ye, W. (2016). Financial contagion behavior analysis based on complex network approach. Annals of Operations Research, 1–19. doi: 10.1007/s10479-016-2362-6 .
Paper not yet in RePEc: Add citation now