Ang, A., & Timmermann, A. (2011). Regime changes and financial markets. Technical report, National Bureau of Economic Research.
Ardia, D. (2009). Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with student-t innovations. The Econometrics Journal, 12(1), 105–126.
Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3–30.
Bali, T. G., & Theodossiou, P. (2007). A conditional-SGT-VaR approach with alternative GARCH models. Annals of Operations Research, 151(1), 241–267.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327.
Bollerslev, T. (1987). A conditional heteroskedastic time series model for speculative prices and rates of return. Review of Economics and Statistics, 69(3), 542–547.
Breidt, F. J., Crato, N., & De Lima, P. (1998). The detection and estimation of long memory in stochastic volatility. Journal of Econometrics, 83(1–2), 325–348.
- Brockwell, A. (2007). Likelihood-based analysis of a class of generalized long-memory time series models. Journal of Time Series Analysis, 28(3), 386–407.
Paper not yet in RePEc: Add citation now
Carstensen, K., Heinrich, M., Reif, M., & Wolters, M. H. (2020). Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model: An application to the German business cycle. International Journal of Forecasting, 36, 829–850.
Carvalho, C. M., & Lopes, H. F. (2007). Simulation-based sequential analysis of Markov switching stochastic volatility models. Computational Statistics & Data Analysis, 51(9), 4526–4542.
Chib, S., Nardari, F., & Shephard, N. (2002). Markov chain Monte Carlo methods for stochastic volatility models. Journal of Econometrics, 108(2), 281–316.
Davidson, J. (2004). Moment and memory properties of linear conditional heteroscedasticity models, and a new model. Journal of Business & Economic Statistics, 22(1), 16–29.
Deo, R. S., & Hurvich, C. M. (2001). On the log periodogram regression estimator of the memory parameter in long memory stochastic volatility models. Econometric Theory, 17(4), 686–710.
Diebold, F. X., & Inoue, A. (2001). Long memory and regime switching. Journal of Econometrics, 105(1), 131–159.
Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive accuracy. Journal of Business & Economic Statistics, 20(1), 134–144.
Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of variance of United Kingdom inflation. Economerica, 50(4), 987–1007.
Feng, L., & Shi, Y. (2017a). Fractionally integrated GARCH model with tempered stable distribution: A simulation study. Journal of Applied Statistics, 44(16), 2837–2857.
Feng, L., & Shi, Y. (2017b). A simulation study on the distributions of disturbances in the GARCH model. Cogent Economics & Finance, 5(1), 1355503.
- Franses, P., & van Dijk, D. (1996). Forecasting stock volatility using (non-linear) GARCH models. Journal of Forecasting, 15, 229–235.
Paper not yet in RePEc: Add citation now
French, K. R., Schwert, G., & Stambaugh, R. F. (1987). Expected stock returns and volatility. Journal of Financial Economics, 19(1), 3–29.
Garman, M. B., & Klass, M. (1980). On the estimation of security price volatilities from. The Journal of Business, 53(1), 67–78.
Gerencsér, L., & Orlovits, Z. (2012). Real time estimation of stochastic volatility processes. Annals of Operations Research, 200(1), 223–246.
- Gray, S. F. (1996). Modeling the conditional distribution of interest rates as a regime-switching process. Journal of Financial Economics, 42(1), 27–62.
Paper not yet in RePEc: Add citation now
Guidolin, M., & Timmermann, A. (2006). An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns. Journal of Applied Econometrics, 21(1), 1–22.
- Haas, M. (2009). Value-at-risk via mixture distributions reconsidered. Applied Mathematics and Computation, 215(6), 2103–2119.
Paper not yet in RePEc: Add citation now
Haas, M., Mittnik, S., & Paolella, M. S. (2004). A new approach to Markov-switching GARCH models. Journal of Financial Econometrics, 2(4), 493–530.
Haldrup, N., & Nielsen, M. Ø. (2006). A regime switching long memory model for electricity prices. Journal of Econometrics, 135(1), 349–376.
Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357–384.
Harvey, A. C., & Shephard, N. (1996). Estimation of an asymmetric stochastic volatility model for asset returns. Journal of Business & Economic Statistics, 14(4), 429–434.
Harvey, A., Ruiz, E., & Shephard, N. (1994). Multivariate stochastic variance models. The Review of Economic Studies, 61(2), 247–264.
Henneke, J. S., Rachev, S. T., Fabozzi, F. J., & Nikolov, M. (2011). MCMC-based estimation of Markov switching ARMA-GARCH models. Applied Economics, 43(3), 259–271.
Hillebrand, E. (2005). Neglecting parameter changes in GARCH models. Journal of Econometrics, 129(1–2), 121–138.
- Ho, K. Y., & Shi, Y. (2020). Discussions on the spurious hyperbolic memory in the conditional variance and a new model. Journal of Empirical Finance, 55, 83–103.
Paper not yet in RePEc: Add citation now
Ho, K. Y., Shi, Y., & Zhang, Z. (2016). It takes two to tango: A regime-switching analysis of the correlation dynamics between the mainland Chinese and Hong Kong stock markets. Scottish Journal of Political Economy, 63(1), 41–65.
Jacquier, E., Polson, N. G., & Rossi, P. E. (2002). Bayesian analysis of stochastic volatility models. Journal of Business & Economic Statistics, 20(1), 69–87.
- Jawadi, F., Louhichi, W., Cheffou, A. I., & Ameur, H. B. (2018). Modeling time-varying beta in a sustainable stock market with a three-regime threshold GARCH model. Annals of Operations Research, 281, 275–295.
Paper not yet in RePEc: Add citation now
Klaassen, F. (2002). Improving GARCH volatility forecasts with regime-switching GARCH. Empirical Economics, 27(2), 363–394.
Krämer, W. (2008). Long memory with Markov-switching GARCH. Economics Letters, 99(2), 390–392.
Lamoureux, C. G., & Lastrapes, W. D. (1990). Heteroskedasticity in stock return data: volume versus GARCH effects. Journal of Finance, 45(1), 221–229.
Lu, X. F., Lai, K. K., & Liang, L. (2014). Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model. Annals of Operations Research, 219(1), 333–357.
Marcucci, J. (2005). Forecasting stock market volatility with regime-switching GARCH models. Studies in Nonlinear Dynamics & Econometrics,. https://doi.org/10.2202/1558-3708.1145 .
- Martens, M., De Pooter, M., Van Dijk, D. (2004). Modeling and forecasting S&P 500 volatility: Long memory, structural breaks and nonlinearity, tinbergen Institute Discussion Paper.
Paper not yet in RePEc: Add citation now
Melino, A., & Turnbull, S. M. (1990). Pricing foreign currency options with stochastic volatility. Journal of Econometrics, 45(1–2), 239–265.
Mikosch, T., & Starica, C. (2004). Changes of structure in financial time series and the GARCH model. REVSTAT, 2(1), 41–73.
Moore, T., & Wang, P. (2007). Volatility in stock returns for new EU member states: Markov regime switching model. International Review of Financial Analysis, 16(3), 282–292.
- Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review E, 49(2), 1685.
Paper not yet in RePEc: Add citation now
Perron, P., & Qu, Z. (2010). Long-memory and level shifts in the volatility of stock market return indices. Journal of Business & Economic Statistics, 28(2), 275–290.
Ross, G. J., et al. (2015). Parametric and nonparametric sequential change detection in r: The CPM package. Journal of Statistical Software, 66(3), 1–20.
Shi, Y., & Feng, L. (2016). A discussion on the innovation distribution of the Markov regime-switching GARCH model. Economic Modelling, 53, 278–288.
Shi, Y., & Ho, K. Y. (2015). Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model. Journal of Banking & Finance, 61, S189–S204.
Smith, D. R. (2002). Markov-switching and stochastic volatility diffusion models of short-term interest rates. Journal of Business & Economic Statistics, 20(2), 183–197.
- Tsay, W. J., & Härdle, W. K. (2009). A generalized ARFIMA process with Markov-switching fractional differencing parameter. Journal of Statistical Computation and Simulation, 79(5), 731–745.
Paper not yet in RePEc: Add citation now
Vo, M. T. (2009). Regime-switching stochastic volatility: Evidence from the crude oil market. Energy Economics, 31(5), 779–788.
- Zheng, K., Li, Y., & Xu, W. (2019). Regime switching model estimation: Spectral clustering hidden Markov model. Annals of Operations Research,. https://doi.org/10.1007/s10479-019-03140-2 .
Paper not yet in RePEc: Add citation now