create a website

Statistical methods for decision support systems in finance: how Benford’s law predicts financial risk. (2024). Riccioni, Jessica ; Maggi, Mario ; Cerqueti, Roy.
In: Annals of Operations Research.
RePEc:spr:annopr:v:342:y:2024:i:3:d:10.1007_s10479-022-04742-z.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 93

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Abrantes-Metz, R. M., Kraten, M., Metz, A. D., & Seow, G. S. (2012). Libor manipulation? Journal of Banking & Finance, 36(1), 136–150.
    Paper not yet in RePEc: Add citation now
  2. Akyildirim, E., Goncu, A., & Sensoy, A. (2021). Prediction of cryptocurrency returns using machine learning. Annals of Operations Research, 297(1), 3–36.

  3. Al Janabi, M. A. (2013). Optimal and coherent economic-capital structures: Evidence from long and short-sales trading positions under illiquid market perspectives. Annals of Operations Research, 205(1), 109–139.

  4. Alali, F. A., & Romero, S. (2013). Benford’s Law: Analyzing a decade of financial data. Journal of Emerging Technologies in Accounting, 10, 1–39.
    Paper not yet in RePEc: Add citation now
  5. Alexander, C. (2008). Market risk analysis, practical financial econometrics (Vol. 2). John Wiley & Sons.
    Paper not yet in RePEc: Add citation now
  6. Ausloos, M., Castellano, R., & Cerqueti, R. (2016). Regularities and discrepancies of credit default swaps: A data science approach through Benford’s Law. Chaos, Solitons & Fractals, 90, 8–17.

  7. Ausloos, M., Cerqueti, R., & Mir, T. A. (2017). Data science for assessing possible tax income manipulation: The case of Italy. Chaos, Solitons & Fractals, 104, 238–256.

  8. Avdoulas, C., Bekiros, S., & Boubaker, S. (2018). Evolutionary-based return forecasting with nonlinear STAR models: Evidence from the Eurozone peripheral stock markets. Annals of Operations Research, 262(2), 307–333.

  9. Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics, 73(1), 5–59.

  10. Benford, F. (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, 78(4), 551–572.
    Paper not yet in RePEc: Add citation now
  11. Bernard, P., De Freitas, N. E. M., & Maillet, B. B. (2019). A financial fraud detection indicator for investors: An IDeA. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03360-6 .

  12. Bhattacharya, S., Xu, D., & Kumar, K. (2011). An ANN-based auditor decision support system using Benford’s law. Decision Support Systems, 50(3), 576–584.
    Paper not yet in RePEc: Add citation now
  13. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.

  14. Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH modeling in finance: A review of the theory and empirical evidence. Journal of Econometrics, 52(1–2), 5–59.

  15. Bollerslev, T., Hood, B., Huss, J., & Pedersen, L. H. (2018). Risk everywhere: Modeling and managing volatility. The Review of Financial Studies, 31(7), 2729–2773.

  16. Borges, M. R. (2010). Efficient market hypothesis in European stock markets. European Journal of Finance, 16, 711–726.

  17. Boros, E., Crama, Y., Hammer, P. L., Ibaraki, T., Kogan, A., & Makino. (2011). Logical analysis of data: Classification with justification. Annals of Operations Research, 188(1), 33.

  18. Carrera, C. (2015). Tracking exchange rate management in Latin America. Review of Financial Economics, 25(C), 35–41.

  19. Castellano, R., Cerqueti, R., & Rotundo, G. (2020). Exploring the financial risk of a temperature index: A fractional integrated approach. Annals of Operations Research, 284(1), 225–242.

  20. Cerqueti, R., & Ausloos, M. (2015). Evidence of economic regularities and disparities of Italian regions from aggregated tax income size data. Physica A, 421, 187–207.

  21. Cerqueti, R., & Maggi, M. (2021). Data validity and statistical conformity with Benford’s Law. Chaos, Solitons & Fractals, 144, 110740.

  22. Clippe, P., & Ausloos, M. (2012). Benford’s law and Theil transform of financial data. Physica A, 391(24), 6556–6567.

  23. Cooper, W. W., Kingyens, A. T., & Paradi, J. C. (2014). Two-stage financial risk tolerance assessment using data envelopment analysis. European Journal of Operational Research, 233(1), 273–280.

  24. Corazza, M., Ellero, A., & Zorzi, A. (2010). Checking financial markets via Benford’s law: The S &P 500 case. In M. Corazza & C. Pizzi (Eds.), Mathematical and statistical methods for actuarial sciences and finance (pp. 93–102). Springer-Verlag.
    Paper not yet in RePEc: Add citation now
  25. Corsi, F., Audrino, F., & Renó, R. (2012). HAR modeling for realized volatility forecasting. In L. Bauwens, C. M. Hafner, & S. Laurent (Eds.), Handbook of volatility models and their applications (Vol. 3, pp. 363–382). John Wiley & Sons.
    Paper not yet in RePEc: Add citation now
  26. D’Ecclesia, R. L., & Clementi, D. (2021). Volatility in the stock market: ANN versus parametric models. Annals of Operations Research, 299(1), 1101–1127.

  27. De Ceuster, M. J. K., Dhaene, G., & Schatteman, T. (1998). On the hypothesis of psychological barriers in stock markets and Benford’s Law. Journal of Empirical Finance, 5, 263–279.

  28. Deleanu, I. S. (2017). Do countries consistently engage in misinforming the international community about their efforts to combat money laundering? Evidence using Benford’s Law. PLoS ONE, 12(1), e0169632.

  29. Desai, V. S., & Bharati, R. (1998). A comparison of linear regression and neural network methods for predicting excess returns on large stocks. Annals of Operations Research, 78, 127–163.

  30. Dhesi, G., Shakeel, B., & Ausloos, M. (2021). Modelling and forecasting the kurtosis and returns distributions of financial markets: Irrational fractional Brownian motion model approach. Annals of Operations Research, 299(1), 1397–1410.

  31. Ding, Z., & Granger, C. W. (1996). Modeling volatility persistence of speculative returns: A new approach. Journal of Econometrics, 73(1), 185–215.

  32. Druica, E., Oancea, B., & Valsan, C. (2018). Benford’s law and the limits of digit analysis. International Journal of Accounting Information Systems, 31, 75–82.

  33. du Jardin, P., & Severin, E. (2012). Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time. European Journal of Operational Research, 221(2), 378–396.

  34. Duan, L., Xu, L., Liu, Y., & Lee, J. (2009). Cluster-based outlier detection. Annals of Operations Research, 168(1), 151–168.

  35. Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1007.

  36. Feldman, D., & Xu, X. (2018). Equilibrium-based volatility models of the market portfolio rate of return (peacock tails or stotting gazelles). Annals of Operations Research, 262(2), 493–518.

  37. Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669.

  38. Gavrishchaka, V. V., & Banerjee, S. (2006). Support vector machine as an efficient framework for stock market volatility forecasting. Computational Management Science, 3(2), 147–160.

  39. Groth, S. S., & Muntermann, J. (2011). An intraday market risk management approach based on textual analysis. Decision Support Systems, 50(4), 680–691.
    Paper not yet in RePEc: Add citation now
  40. Gu, W., & Peng, Y. (2019). Forecasting the market return direction based on a time-varying probability density model. Technological Forecasting and Social Change, 148, 119726.
    Paper not yet in RePEc: Add citation now
  41. Guerard, J. B., Xu, G., & Markowitz, H. (2021). A further analysis of robust regression modeling and data mining corrections testing in global stocks. Annals of Operations Research, 303(1), 175–195.

  42. Günnel, S., & Tödter, K. H. (2009). Does Benford’s Law hold in economic research and forecasting? Empirica, 36(3), 273–292.
    Paper not yet in RePEc: Add citation now
  43. Hales, D. N., Chakravorty, S. S., & Sridharan, V. (2009). Testing Benford’s Law for improving supply chain decision-making: A field experiment. International Journal of Production Economics, 122(2), 606–618.

  44. Hales, D. N., Sridharan, V., Radhakrishnan, A., Chakravorty, S. S., & Siha, S. M. (2008). Testing the accuracy of employee-reported data: An inexpensive alternative approach to traditional methods. European Journal of Operational Research, 189(3), 583–593.

  45. Hand, D. J. (2010). Fraud detection in telecommunications and banking: Discussion of Becker, Volinsky, and Wilks (2010) and Sudjianto et al. (2010). Technometrics, 52(1), 34–38.
    Paper not yet in RePEc: Add citation now
  46. Hill, T. P. (1995). A Statistical derivation of the significant-digit law. Statistical Science, 10(4), 354–363.
    Paper not yet in RePEc: Add citation now
  47. Hill, T. P. (1995). Base-invariance implies Benford’s Law. Proceedings of the American Mathematical Society, 123, 887–895.
    Paper not yet in RePEc: Add citation now
  48. Hill, T. P. (1995). The significant-digit phenomenon. The American Mathematical Monthly, 102(4), 322–327.
    Paper not yet in RePEc: Add citation now
  49. Hill, T. P. (1998). The First Digit Phenomenon: A century-old observation about an unexpected pattern in many numerical tables applies to the stock market, census statistics and accounting data. American Scientist, 86(4), 358–363.
    Paper not yet in RePEc: Add citation now
  50. Holz, C. A. (2014). The quality of China’s GDP statistics. China Economic Review, 30, 309–338.
    Paper not yet in RePEc: Add citation now
  51. Huang, S. M., Yen, D. C., Yang, L. W., & Hua, J. S. (2008). An investigation of Zipf’s Law for fraud detection (DSS# 06–10-1826R (2)). Decision Support Systems, 46(1), 70–83.
    Paper not yet in RePEc: Add citation now
  52. Huang, Y., & Kou, G. (2014). A kernel entropy manifold learning approach for financial data analysis. Decision Support Systems, 64, 31–42.
    Paper not yet in RePEc: Add citation now
  53. Jana, R. K., Ghosh, I., & Das, D. (2021). A differential evolution-based regression framework for forecasting Bitcoin price. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04000-8 .

  54. Jiang, C., Wang, Z., Wang, R., & Ding, Y. (2018). Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending. Annals of Operations Research, 266(1), 511–529.

  55. Juergens, J. L., & Lindsey, L. (2009). Getting out early: An analysis of market making activity at the recommending analyst’s firm. The Journal of Finance, 64, 2327–2359.

  56. Karavardar, A. (2014). Benford’s law and an analysis in Istanbul stock exchange (BIST). International Journal of Business and Management, 9, 160–172.
    Paper not yet in RePEc: Add citation now
  57. Kossovsky, A. E. (2014). Benford’s Law: Theory, the General Law of Relative Quantities, and Forensic Fraud Detection Applications (Vol. 3). World Scientific.
    Paper not yet in RePEc: Add citation now
  58. Kürüm, E., Weber, G. W., & Iyigun, C. (2018). Early warning on stock market bubbles via methods of optimization, clustering and inverse problems. Annals of Operations Research, 260(1–2), 293–320.

  59. Kyriakou, I., Mousavi, P., Nielsen, J. P., & Scholz, M. (2021). Forecasting benchmarks of long-term stock returns via machine learning. Annals of Operations Research, 297(1), 221–240.

  60. Ley, E. (1996). On the peculiar distribution of the U.S. stock indices digits. The American Statistician, 50, 311–314.
    Paper not yet in RePEc: Add citation now
  61. Ley, E., & Varian, H. R. (1994). Are there psychological barriers in the Dow-Jones index? Applied Financial Economics, 4(3), 217–224.
    Paper not yet in RePEc: Add citation now
  62. Liu, Y. (2019). Novel volatility forecasting using deep learning-long short term memory recurrent neural networks. Expert Systems with Applications, 132, 99–109.
    Paper not yet in RePEc: Add citation now
  63. Meng, X., & Taylor, J. W. (2020). Estimating value-at-risk and expected Shortfall using the intraday low and range data. European Journal of Operational Research, 280(1), 191–202.

  64. Michalski, T., & Stoltz, G. (2013). Do countries falsify economic data strategically? Some evidence that they might. Review of Economics and Statistics, 95(2), 591–616.

  65. Mir, T. A. (2016). The leading digit distribution of the worldwide illicit financial flows. Quality & Quantity, 50(1), 271–281.

  66. Mir, T. A., & Ausloos, M. (2018). Benford’s law: A sleeping beauty sleeping in the dirty pages of logarithmic tables. Journal of the Association for Information Science and Technology, 69(3), 349–358.

  67. Mir, T. A., Ausloos, M., & Cerqueti, R. (2014). Benford’s Law predicted digit distribution of aggregated income taxes: The surprising conformity of Italian cities and regions. The European Physical Journal B, 87(11), 12–8.

  68. Neely, C. J. (2011). A survey of announcement effects on foreign exchange volatility and jumps. Federal Reserve Bank of St. Louis Review, 93(5), 361–407.
    Paper not yet in RePEc: Add citation now
  69. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370.

  70. Ngai, E., Hu, Y., Wong, Y., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559–569.
    Paper not yet in RePEc: Add citation now
  71. Nigrini, M. J. (1996). A taxpayer compliance application of Benford’s Law. The Journal of the American Taxation Association, 18(1), 72–91.
    Paper not yet in RePEc: Add citation now
  72. Nigrini, M. J. (1999). Fraud detection: I’ve got your number. Journal of Accountancy, 187, 79–83.
    Paper not yet in RePEc: Add citation now
  73. Nigrini, M. J. (2012). Benford’s Law: Applications for forensic accounting, auditing, and fraud detection. John Wiley & Sons.
    Paper not yet in RePEc: Add citation now
  74. Nigrini, M. J. (2015). Persistent patterns in stock returns, stock volumes, and accounting data in the U.S. Capital markets. Journal of Accounting, Auditing & Finance, 30(4), 541–557.
    Paper not yet in RePEc: Add citation now
  75. Nigrini, M. J. (2017). Audit sampling using Benford’s law: A review of the literature with some new perspectives. Journal of Emerging Technologies in Accounting, 14(2), 29–46.
    Paper not yet in RePEc: Add citation now
  76. Noakes, M. A., & Rajaratnam, K. (2016). Testing market efficiency on the Johannesburg Stock Exchange using the overlapping serial test. Annals of Operations Research, 243(1), 273–300.

  77. Nye, J., & Moul, C. (2007). The political economy of numbers: On the application of Benford’s Law to international macroeconomic statistics. The BE Journal of Macroeconomics, 7(1), 1–14.

  78. Oztekin, A., Kizilaslan, R., Freund, S., & Iseri, A. (2016). A data analytic approach to forecasting daily stock returns in an emerging market. European Journal of Operational Research, 253(3), 697–710.

  79. Patton, A. J., Ramadorai, T., & Streatfield, M. (2015). Change you can believe in? Hedge fund data revisions. Journal of Finance, 70(3), 963–999.

  80. Pietronero, L., Tosatti, E., Tosatti, V., & Vespignani, A. (2001). Explaining the uneven distribution of numbers in nature: The laws of Benford and Zipf. Physica A, 293(1–2), 297–304.

  81. Rauch, B., Göttsche, M., Brähler, G., & Engel, S. (2011). Fact and fiction in EU-governmental economic data. German Economic Review, 12(3), 243–255.
    Paper not yet in RePEc: Add citation now
  82. Rauch, B., Göttsche, M., Brähler, G., & Kronfeld, T. (2014). Deficit versus social statistics: Empirical evidence for the effectiveness of Benford’s law. Applied Economics Letters, 21(3), 147–151.

  83. Realdon, M. (2008). Credit default swap rates and stock prices. Applied Financial Economics Letters, 4(4), 241–248.

  84. Riccioni, J., & Cerqueti, R. (2018). Regular paths in financial markets: Investigating the Benford’s law. Chaos, Solitons & Fractals, 107, 186–194.

  85. Santos, D. G., & Ziegelmann, F. A. (2014). Volatility forecasting via MIDAS, HAR and their combination: An empirical comparative study for IBOVESPA. Journal of Forecasting, 33(4), 284–299.

  86. Satchell, S., & Knight, J. (2011). Forecasting volatility in the financial markets. Elsevier.
    Paper not yet in RePEc: Add citation now
  87. Shi, J., Ausloos, M., & Zhu, T. (2018). Benford’s law first significant digit and distribution distances for testing the reliability of financial reports in developing countries. Physica A, 492, 878–888.

  88. Sudjianto, A., Nair, S., Yuan, M., Zhang, A., Kern, D., & Cela-Diaz, F. (2010). Statistical methods for fighting financial crimes. Technometrics, 52, 5–19.
    Paper not yet in RePEc: Add citation now
  89. Tödter, K. (2009). Benford’s Law as an indicator of fraud in economics. German Economic Review, 10(3), 339–351.
    Paper not yet in RePEc: Add citation now
  90. Venkatesh, K., Ravi, V., Prinzie, A., & Van den Poel, D. (2014). Cash demand forecasting in ATMs by clustering and neural networks. European Journal of Operational Research, 232(2), 383–392.

  91. Vortelinos, D. I. (2017). Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH. Research in International Business and Finance, 39, 824–839.

  92. Yap, B. W., & Sim, C. H. (2011). Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation, 81(12), 2141–2155.
    Paper not yet in RePEc: Add citation now
  93. Zumbach, G. (2004). Volatility processes and volatility forecast with long memory. Quantitative Finance, 4(1), 70–86.

Cocites

Documents in RePEc which have cited the same bibliography

  1. Dynamics in Realized Volatility Forecasting: Evaluating GARCH Models and Deep Learning Algorithms Across Parameter Variations. (2025). Gulay, Emrah ; Akgun, Omer Burak.
    In: Computational Economics.
    RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10694-2.

    Full description at Econpapers || Download paper

  2. Quantifying Cryptocurrency Unpredictability: A Comprehensive Study of Complexity and Forecasting. (2025). Roveri, Manuel ; Pittorino, Fabrizio ; Puoti, Francesco.
    In: Papers.
    RePEc:arx:papers:2502.09079.

    Full description at Econpapers || Download paper

  3. Machine learning in business and finance: a literature review and research opportunities. (2024). Li, Cong-Cong ; Dong, Yucheng ; Chao, Xiangrui ; Zhang, Hengjie ; Liang, Haiming ; Gao, Hanyao ; Kou, Gang.
    In: Financial Innovation.
    RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-024-00629-z.

    Full description at Econpapers || Download paper

  4. Feature selection with annealing for forecasting financial time series. (2024). Barbu, Adrian ; Pabuccu, Hakan.
    In: Financial Innovation.
    RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-024-00617-3.

    Full description at Econpapers || Download paper

  5. Statistical methods for decision support systems in finance: how Benford’s law predicts financial risk. (2024). Riccioni, Jessica ; Maggi, Mario ; Cerqueti, Roy.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:342:y:2024:i:3:d:10.1007_s10479-022-04742-z.

    Full description at Econpapers || Download paper

  6. Intuitionistic fuzzy least square twin support vector machines for pattern classification. (2024). Kumar, Sumit ; Gupta, S K ; Laxmi, Scindhiya.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-022-04626-2.

    Full description at Econpapers || Download paper

  7. Investor attention and cryptocurrency market liquidity: a double-edged sword. (2024). Sensoy, Ahmet ; Nguyen, Duc Khuong ; Li, Tong ; Yao, Shouyu.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:334:y:2024:i:1:d:10.1007_s10479-022-04915-w.

    Full description at Econpapers || Download paper

  8. Cryptocurrency market microstructure: a systematic literature review. (2024). Gonçalves, Tiago ; Almeida, Jos ; Gonalves, Tiago Cruz.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:332:y:2024:i:1:d:10.1007_s10479-023-05627-5.

    Full description at Econpapers || Download paper

  9. Machine Learning-Based Approach for Predicting the Altcoins Price Direction Change from a High-Frequency Data of Seven Years Based on Socio-Economic Factors, Bitcoin Prices, Twitter and News Sentiments. (2024). Gupta, Anamika ; Pandey, Gaurav ; Das, Smaran ; Prakash, Ajmera ; Sarkar, Shreyan ; Garg, Kartik.
    In: Computational Economics.
    RePEc:kap:compec:v:64:y:2024:i:5:d:10.1007_s10614-023-10538-5.

    Full description at Econpapers || Download paper

  10. Energy Performance of Building Refurbishments: Predictive and Prescriptive AI-based Machine Learning Approaches. (2024). Nyawa, Serge ; Dey, Prasanta Kumar ; Tchuente, Dieudonne ; Gnekpe, Christian.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:183:y:2024:i:c:s0148296324003254.

    Full description at Econpapers || Download paper

  11. Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods. (2024). Hajek, Petr ; Abedin, Mohammad Zoynul ; Yuan, Kunpeng ; Bouteska, Ahmed.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:92:y:2024:i:c:s1057521923005719.

    Full description at Econpapers || Download paper

  12. Intricacy of cryptocurrency returns. (2024). Nagl, Maximilian.
    In: Economics Letters.
    RePEc:eee:ecolet:v:239:y:2024:i:c:s0165176524002295.

    Full description at Econpapers || Download paper

  13. Dynamic Bayesian Networks for Predicting Cryptocurrency Price Directions: Uncovering Causal Relationships. (2024). Amirzadeh, Rasoul ; Ee, Mong Shan ; Thiruvady, Dhananjay ; Nazari, Asef.
    In: Papers.
    RePEc:arx:papers:2306.08157.

    Full description at Econpapers || Download paper

  14. Feature Selection with Annealing for Forecasting Financial Time Series. (2024). Pabuccu, Hakan ; Barbu, Adrian.
    In: Papers.
    RePEc:arx:papers:2303.02223.

    Full description at Econpapers || Download paper

  15. Investigating the Role of Activation Functions in Predicting the Price of Cryptocurrencies during Critical Economic Periods. (2024). Bareith, Tibor ; Tatay, Tibor ; Vancsura, Laszlo.
    In: Virtual Economics.
    RePEc:aid:journl:v:7:y:2024:i:4:p:64-91.

    Full description at Econpapers || Download paper

  16. Which factors drive Bitcoin volatility: Macroeconomic, technical, or both?. (2023). Guo, Yangli ; Wang, Jiqian ; Ma, Feng ; Bouri, Elie.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:42:y:2023:i:4:p:970-988.

    Full description at Econpapers || Download paper

  17. Forecasting and trading Bitcoin with machine learning techniques and a hybrid volatility/sentiment leverage. (2023). Sermpinis, Georgios ; Wei, Mingzhe ; Stasinakis, Charalampos.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:42:y:2023:i:4:p:852-871.

    Full description at Econpapers || Download paper

  18. Jump forecasting in foreign exchange markets: A high‐frequency analysis. (2023). Sensoy, Ahmet ; Nguyen, Duc Khuong ; Uzun, Sevcan.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:42:y:2023:i:3:p:578-624.

    Full description at Econpapers || Download paper

  19. Cryptocurrency volatility forecasting: What can we learn from the first wave of the COVID-19 outbreak?. (2023). ben Ameur, Hachmi ; Louhichi, Wael ; Ftiti, Zied.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-021-04116-x.

    Full description at Econpapers || Download paper

  20. Understanding the effect of contextual factors and decision making on team performance in Twenty20 cricket: an interpretable machine learning approach. (2023). Roy, Soumya ; Puram, Praveen ; Srivastav, Deepak ; Gurumurthy, Anand.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:325:y:2023:i:1:d:10.1007_s10479-022-05027-1.

    Full description at Econpapers || Download paper

  21. Price Prediction of Cryptocurrency Using a Multi-Layer Gated Recurrent Unit Network with Multi Features. (2023). Mohanty, Mihir Narayan ; Patra, Gyana Ranjan.
    In: Computational Economics.
    RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10310-1.

    Full description at Econpapers || Download paper

  22. Spatiotemporal analysis of bike-share demand using DTW-based clustering and predictive analytics. (2023). Ka, Eric ; Hang, Carmen Kar.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:180:y:2023:i:c:s1366554523003496.

    Full description at Econpapers || Download paper

  23. Implications of cryptocurrency energy usage on climate change. (2023). Lau, Chi Keung ; Chen, Xihui Haviour ; Zhang, Dongna ; Marco, Chi Keung ; Xu, Bing.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:187:y:2023:i:c:s0040162522007405.

    Full description at Econpapers || Download paper

  24. Forecasting cryptocurrency returns with machine learning. (2023). NEKHILI, Ramzi ; Liu, Yujun ; Sultan, Jahangir.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:64:y:2023:i:c:s0275531923000314.

    Full description at Econpapers || Download paper

  25. Optimal mining in proof-of-work blockchain protocols. (2023). Soria, Jorge ; Moya, Jorge ; Mohazab, Amin.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:53:y:2023:i:c:s1544612322007863.

    Full description at Econpapers || Download paper

  26. Explainable artificial intelligence modeling to forecast bitcoin prices. (2023). Saâdaoui, Foued ; Nasir, Muhammad Ali ; ben Jabeur, Sami ; Goodell, John W ; Saadaoui, Foued.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:88:y:2023:i:c:s1057521923002181.

    Full description at Econpapers || Download paper

  27. Trend-based forecast of cryptocurrency returns. (2023). Tao, Yubo ; Tan, Xilong.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:124:y:2023:i:c:s0264999323001359.

    Full description at Econpapers || Download paper

  28. Forecasting gold price using machine learning methodologies. (2023). Cohen, Gil ; Aiche, Avishay.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:175:y:2023:i:p2:s0960077923009803.

    Full description at Econpapers || Download paper

  29. Bayesian framework for characterizing cryptocurrency market dynamics, structural dependency, and volatility using potential field. (2023). Negi, Neeraj ; Aprem, Anup.
    In: Papers.
    RePEc:arx:papers:2308.01013.

    Full description at Econpapers || Download paper

  30. The mutual predictability of Bitcoin and web search dynamics. (2022). Sussmuth, Bernd.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:41:y:2022:i:3:p:435-454.

    Full description at Econpapers || Download paper

  31. Past, present, and future of the application of machine learning in cryptocurrency research. (2022). Baltas, Konstantinos ; Ren, Yi-Shuai ; Kong, Xiao-Lin ; Zureigat, Qasim ; Ma, Chao-Qun.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:63:y:2022:i:c:s0275531922001854.

    Full description at Econpapers || Download paper

  32. Can investors’ informed trading predict cryptocurrency returns? Evidence from machine learning. (2022). Sensoy, Ahmet ; Wang, Yaqi ; Yao, Shouyu ; Cheng, Feiyang.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:62:y:2022:i:c:s027553192200071x.

    Full description at Econpapers || Download paper

  33. Out-of-sample forecasting of cryptocurrency returns: A comprehensive comparison of predictors and algorithms. (2022). Yae, James ; Tian, George Zhe.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:598:y:2022:i:c:s0378437122002928.

    Full description at Econpapers || Download paper

  34. Explainable artificial intelligence for crypto asset allocation. (2022). Giudici, Paolo ; Babaei, Golnoosh ; Raffinetti, Emanuela.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:47:y:2022:i:pb:s1544612322002021.

    Full description at Econpapers || Download paper

  35. A novel heavy tail distribution of logarithmic returns of cryptocurrencies. (2022). Tran, Quang ; van Tran, Quang ; Kukal, Jaromir.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:47:y:2022:i:pa:s1544612321005250.

    Full description at Econpapers || Download paper

  36. Nonlinear nexus between cryptocurrency returns and COVID-19 news sentiment. (2022). Sensoy, Ahmet ; Almeida, Dora ; Akhtaruzzaman, Md ; Dionisio, Andreia ; Banerjee, Ameet Kumar.
    In: Journal of Behavioral and Experimental Finance.
    RePEc:eee:beexfi:v:36:y:2022:i:c:s2214635022000703.

    Full description at Econpapers || Download paper

  37. A new hybrid machine learning model for predicting the bitcoin (BTC-USD) price. (2022). Nagula, Pavan Kumar ; Alexakis, Christos.
    In: Journal of Behavioral and Experimental Finance.
    RePEc:eee:beexfi:v:36:y:2022:i:c:s2214635022000673.

    Full description at Econpapers || Download paper

  38. Forecasting Bitcoin volatility spikes from whale transactions and CryptoQuant data using Synthesizer Transformer models. (2022). Low, Kah Wee ; Herremans, Dorien.
    In: Papers.
    RePEc:arx:papers:2211.08281.

    Full description at Econpapers || Download paper

  39. Lottery-like preferences and the MAX effect in the cryptocurrency market. (2021). Sensoy, Ahmet ; Ozdamar, Melisa ; Akdeniz, Levent.
    In: Financial Innovation.
    RePEc:spr:fininn:v:7:y:2021:i:1:d:10.1186_s40854-021-00291-9.

    Full description at Econpapers || Download paper

  40. Efficiency in cryptocurrency markets: new evidence. (2021). ARGUEDAS SANZ, RAQUEL ; Muela, Sonia Benito ; Lopez-Martin, Carmen.
    In: Eurasian Economic Review.
    RePEc:spr:eurase:v:11:y:2021:i:3:d:10.1007_s40822-021-00182-5.

    Full description at Econpapers || Download paper

  41. Herding and feedback trading in cryptocurrency markets. (2021). King, Timothy ; Koutmos, Dimitrios.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:300:y:2021:i:1:d:10.1007_s10479-020-03874-4.

    Full description at Econpapers || Download paper

  42. Is It Possible to Forecast the Price of Bitcoin?. (2021). Goutte, Stéphane ; Chevallier, Julien ; Guegan, Dominique.
    In: Post-Print.
    RePEc:hal:journl:halshs-04250269.

    Full description at Econpapers || Download paper

  43. Is It Possible to Forecast the Price of Bitcoin?. (2021). Goutte, Stéphane ; Guegan, Dominique ; Chevallier, Julien.
    In: Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers).
    RePEc:hal:cesptp:halshs-04250269.

    Full description at Econpapers || Download paper

  44. Univariate and Multivariate Machine Learning Forecasting Models on the Price Returns of Cryptocurrencies. (2021). Kim, Jong-Min ; Miller, Dante.
    In: JRFM.
    RePEc:gam:jjrfmx:v:14:y:2021:i:10:p:486-:d:655642.

    Full description at Econpapers || Download paper

  45. Is It Possible to Forecast the Price of Bitcoin?. (2021). Goutte, Stéphane ; Chevallier, Julien ; Guegan, Dominique.
    In: Forecasting.
    RePEc:gam:jforec:v:3:y:2021:i:2:p:24-420:d:564101.

    Full description at Econpapers || Download paper

  46. How cryptocurrency affects economy? A network analysis using bibliometric methods. (2021). Yue, Yao ; Li, Xuerong ; Wang, Shouyang ; Zhang, Dingxuan.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:77:y:2021:i:c:s1057521921001976.

    Full description at Econpapers || Download paper

  47. Dynamic efficiency and arbitrage potential in Bitcoin: A long-memory approach. (2021). Urquhart, Andrew ; Li, Zeming ; Duan, Kun ; Ye, Jinqiang.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:75:y:2021:i:c:s1057521921000685.

    Full description at Econpapers || Download paper

  48. Is Bitcoin a better portfolio diversifier than gold? A copula and sectoral analysis for China. (2021). Wong, Wing-Keung ; van Hoang, Thi Hong ; Ly, Sel ; Lu, Richard ; Pho, Kim Hung.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:74:y:2021:i:c:s105752192100017x.

    Full description at Econpapers || Download paper

  49. On Technical Trading and Social Media Indicators in Cryptocurrencies Price Classification Through Deep Learning. (2021). Bartolucci, Silvia ; Uras, Nicola ; Ortu, Marco ; Destefanis, Giuseppe ; Conversano, Claudio.
    In: Papers.
    RePEc:arx:papers:2102.08189.

    Full description at Econpapers || Download paper

  50. Forecasting Mid-price Movement of Bitcoin Futures Using Machine Learning. (2020). Uddin, Gazi ; Corbet, Shaen ; Cepni, Oguzhan ; Akyildirim, Erdinc.
    In: Working Papers.
    RePEc:hhs:cbsnow:2020_020.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-30 05:55:30 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.