- Abrantes-Metz, R. M., Kraten, M., Metz, A. D., & Seow, G. S. (2012). Libor manipulation? Journal of Banking & Finance, 36(1), 136–150.
Paper not yet in RePEc: Add citation now
Akyildirim, E., Goncu, A., & Sensoy, A. (2021). Prediction of cryptocurrency returns using machine learning. Annals of Operations Research, 297(1), 3–36.
Al Janabi, M. A. (2013). Optimal and coherent economic-capital structures: Evidence from long and short-sales trading positions under illiquid market perspectives. Annals of Operations Research, 205(1), 109–139.
- Alali, F. A., & Romero, S. (2013). Benford’s Law: Analyzing a decade of financial data. Journal of Emerging Technologies in Accounting, 10, 1–39.
Paper not yet in RePEc: Add citation now
- Alexander, C. (2008). Market risk analysis, practical financial econometrics (Vol. 2). John Wiley & Sons.
Paper not yet in RePEc: Add citation now
Ausloos, M., Castellano, R., & Cerqueti, R. (2016). Regularities and discrepancies of credit default swaps: A data science approach through Benford’s Law. Chaos, Solitons & Fractals, 90, 8–17.
Ausloos, M., Cerqueti, R., & Mir, T. A. (2017). Data science for assessing possible tax income manipulation: The case of Italy. Chaos, Solitons & Fractals, 104, 238–256.
Avdoulas, C., Bekiros, S., & Boubaker, S. (2018). Evolutionary-based return forecasting with nonlinear STAR models: Evidence from the Eurozone peripheral stock markets. Annals of Operations Research, 262(2), 307–333.
Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics, 73(1), 5–59.
- Benford, F. (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, 78(4), 551–572.
Paper not yet in RePEc: Add citation now
Bernard, P., De Freitas, N. E. M., & Maillet, B. B. (2019). A financial fraud detection indicator for investors: An IDeA. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03360-6 .
- Bhattacharya, S., Xu, D., & Kumar, K. (2011). An ANN-based auditor decision support system using Benford’s law. Decision Support Systems, 50(3), 576–584.
Paper not yet in RePEc: Add citation now
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.
Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH modeling in finance: A review of the theory and empirical evidence. Journal of Econometrics, 52(1–2), 5–59.
Bollerslev, T., Hood, B., Huss, J., & Pedersen, L. H. (2018). Risk everywhere: Modeling and managing volatility. The Review of Financial Studies, 31(7), 2729–2773.
Borges, M. R. (2010). Efficient market hypothesis in European stock markets. European Journal of Finance, 16, 711–726.
Boros, E., Crama, Y., Hammer, P. L., Ibaraki, T., Kogan, A., & Makino. (2011). Logical analysis of data: Classification with justification. Annals of Operations Research, 188(1), 33.
Carrera, C. (2015). Tracking exchange rate management in Latin America. Review of Financial Economics, 25(C), 35–41.
Castellano, R., Cerqueti, R., & Rotundo, G. (2020). Exploring the financial risk of a temperature index: A fractional integrated approach. Annals of Operations Research, 284(1), 225–242.
Cerqueti, R., & Ausloos, M. (2015). Evidence of economic regularities and disparities of Italian regions from aggregated tax income size data. Physica A, 421, 187–207.
Cerqueti, R., & Maggi, M. (2021). Data validity and statistical conformity with Benford’s Law. Chaos, Solitons & Fractals, 144, 110740.
Clippe, P., & Ausloos, M. (2012). Benford’s law and Theil transform of financial data. Physica A, 391(24), 6556–6567.
Cooper, W. W., Kingyens, A. T., & Paradi, J. C. (2014). Two-stage financial risk tolerance assessment using data envelopment analysis. European Journal of Operational Research, 233(1), 273–280.
- Corazza, M., Ellero, A., & Zorzi, A. (2010). Checking financial markets via Benford’s law: The S &P 500 case. In M. Corazza & C. Pizzi (Eds.), Mathematical and statistical methods for actuarial sciences and finance (pp. 93–102). Springer-Verlag.
Paper not yet in RePEc: Add citation now
- Corsi, F., Audrino, F., & Renó, R. (2012). HAR modeling for realized volatility forecasting. In L. Bauwens, C. M. Hafner, & S. Laurent (Eds.), Handbook of volatility models and their applications (Vol. 3, pp. 363–382). John Wiley & Sons.
Paper not yet in RePEc: Add citation now
D’Ecclesia, R. L., & Clementi, D. (2021). Volatility in the stock market: ANN versus parametric models. Annals of Operations Research, 299(1), 1101–1127.
De Ceuster, M. J. K., Dhaene, G., & Schatteman, T. (1998). On the hypothesis of psychological barriers in stock markets and Benford’s Law. Journal of Empirical Finance, 5, 263–279.
Deleanu, I. S. (2017). Do countries consistently engage in misinforming the international community about their efforts to combat money laundering? Evidence using Benford’s Law. PLoS ONE, 12(1), e0169632.
Desai, V. S., & Bharati, R. (1998). A comparison of linear regression and neural network methods for predicting excess returns on large stocks. Annals of Operations Research, 78, 127–163.
Dhesi, G., Shakeel, B., & Ausloos, M. (2021). Modelling and forecasting the kurtosis and returns distributions of financial markets: Irrational fractional Brownian motion model approach. Annals of Operations Research, 299(1), 1397–1410.
Ding, Z., & Granger, C. W. (1996). Modeling volatility persistence of speculative returns: A new approach. Journal of Econometrics, 73(1), 185–215.
Druica, E., Oancea, B., & Valsan, C. (2018). Benford’s law and the limits of digit analysis. International Journal of Accounting Information Systems, 31, 75–82.
du Jardin, P., & Severin, E. (2012). Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time. European Journal of Operational Research, 221(2), 378–396.
Duan, L., Xu, L., Liu, Y., & Lee, J. (2009). Cluster-based outlier detection. Annals of Operations Research, 168(1), 151–168.
Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1007.
Feldman, D., & Xu, X. (2018). Equilibrium-based volatility models of the market portfolio rate of return (peacock tails or stotting gazelles). Annals of Operations Research, 262(2), 493–518.
Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669.
Gavrishchaka, V. V., & Banerjee, S. (2006). Support vector machine as an efficient framework for stock market volatility forecasting. Computational Management Science, 3(2), 147–160.
- Groth, S. S., & Muntermann, J. (2011). An intraday market risk management approach based on textual analysis. Decision Support Systems, 50(4), 680–691.
Paper not yet in RePEc: Add citation now
- Gu, W., & Peng, Y. (2019). Forecasting the market return direction based on a time-varying probability density model. Technological Forecasting and Social Change, 148, 119726.
Paper not yet in RePEc: Add citation now
Guerard, J. B., Xu, G., & Markowitz, H. (2021). A further analysis of robust regression modeling and data mining corrections testing in global stocks. Annals of Operations Research, 303(1), 175–195.
- Günnel, S., & Tödter, K. H. (2009). Does Benford’s Law hold in economic research and forecasting? Empirica, 36(3), 273–292.
Paper not yet in RePEc: Add citation now
Hales, D. N., Chakravorty, S. S., & Sridharan, V. (2009). Testing Benford’s Law for improving supply chain decision-making: A field experiment. International Journal of Production Economics, 122(2), 606–618.
Hales, D. N., Sridharan, V., Radhakrishnan, A., Chakravorty, S. S., & Siha, S. M. (2008). Testing the accuracy of employee-reported data: An inexpensive alternative approach to traditional methods. European Journal of Operational Research, 189(3), 583–593.
- Hand, D. J. (2010). Fraud detection in telecommunications and banking: Discussion of Becker, Volinsky, and Wilks (2010) and Sudjianto et al. (2010). Technometrics, 52(1), 34–38.
Paper not yet in RePEc: Add citation now
- Hill, T. P. (1995). A Statistical derivation of the significant-digit law. Statistical Science, 10(4), 354–363.
Paper not yet in RePEc: Add citation now
- Hill, T. P. (1995). Base-invariance implies Benford’s Law. Proceedings of the American Mathematical Society, 123, 887–895.
Paper not yet in RePEc: Add citation now
- Hill, T. P. (1995). The significant-digit phenomenon. The American Mathematical Monthly, 102(4), 322–327.
Paper not yet in RePEc: Add citation now
- Hill, T. P. (1998). The First Digit Phenomenon: A century-old observation about an unexpected pattern in many numerical tables applies to the stock market, census statistics and accounting data. American Scientist, 86(4), 358–363.
Paper not yet in RePEc: Add citation now
- Holz, C. A. (2014). The quality of China’s GDP statistics. China Economic Review, 30, 309–338.
Paper not yet in RePEc: Add citation now
- Huang, S. M., Yen, D. C., Yang, L. W., & Hua, J. S. (2008). An investigation of Zipf’s Law for fraud detection (DSS# 06–10-1826R (2)). Decision Support Systems, 46(1), 70–83.
Paper not yet in RePEc: Add citation now
- Huang, Y., & Kou, G. (2014). A kernel entropy manifold learning approach for financial data analysis. Decision Support Systems, 64, 31–42.
Paper not yet in RePEc: Add citation now
Jana, R. K., Ghosh, I., & Das, D. (2021). A differential evolution-based regression framework for forecasting Bitcoin price. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04000-8 .
Jiang, C., Wang, Z., Wang, R., & Ding, Y. (2018). Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending. Annals of Operations Research, 266(1), 511–529.
Juergens, J. L., & Lindsey, L. (2009). Getting out early: An analysis of market making activity at the recommending analyst’s firm. The Journal of Finance, 64, 2327–2359.
- Karavardar, A. (2014). Benford’s law and an analysis in Istanbul stock exchange (BIST). International Journal of Business and Management, 9, 160–172.
Paper not yet in RePEc: Add citation now
- Kossovsky, A. E. (2014). Benford’s Law: Theory, the General Law of Relative Quantities, and Forensic Fraud Detection Applications (Vol. 3). World Scientific.
Paper not yet in RePEc: Add citation now
Kürüm, E., Weber, G. W., & Iyigun, C. (2018). Early warning on stock market bubbles via methods of optimization, clustering and inverse problems. Annals of Operations Research, 260(1–2), 293–320.
Kyriakou, I., Mousavi, P., Nielsen, J. P., & Scholz, M. (2021). Forecasting benchmarks of long-term stock returns via machine learning. Annals of Operations Research, 297(1), 221–240.
- Ley, E. (1996). On the peculiar distribution of the U.S. stock indices digits. The American Statistician, 50, 311–314.
Paper not yet in RePEc: Add citation now
- Ley, E., & Varian, H. R. (1994). Are there psychological barriers in the Dow-Jones index? Applied Financial Economics, 4(3), 217–224.
Paper not yet in RePEc: Add citation now
- Liu, Y. (2019). Novel volatility forecasting using deep learning-long short term memory recurrent neural networks. Expert Systems with Applications, 132, 99–109.
Paper not yet in RePEc: Add citation now
Meng, X., & Taylor, J. W. (2020). Estimating value-at-risk and expected Shortfall using the intraday low and range data. European Journal of Operational Research, 280(1), 191–202.
Michalski, T., & Stoltz, G. (2013). Do countries falsify economic data strategically? Some evidence that they might. Review of Economics and Statistics, 95(2), 591–616.
Mir, T. A. (2016). The leading digit distribution of the worldwide illicit financial flows. Quality & Quantity, 50(1), 271–281.
Mir, T. A., & Ausloos, M. (2018). Benford’s law: A sleeping beauty sleeping in the dirty pages of logarithmic tables. Journal of the Association for Information Science and Technology, 69(3), 349–358.
Mir, T. A., Ausloos, M., & Cerqueti, R. (2014). Benford’s Law predicted digit distribution of aggregated income taxes: The surprising conformity of Italian cities and regions. The European Physical Journal B, 87(11), 12–8.
- Neely, C. J. (2011). A survey of announcement effects on foreign exchange volatility and jumps. Federal Reserve Bank of St. Louis Review, 93(5), 361–407.
Paper not yet in RePEc: Add citation now
Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370.
- Ngai, E., Hu, Y., Wong, Y., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559–569.
Paper not yet in RePEc: Add citation now
- Nigrini, M. J. (1996). A taxpayer compliance application of Benford’s Law. The Journal of the American Taxation Association, 18(1), 72–91.
Paper not yet in RePEc: Add citation now
- Nigrini, M. J. (1999). Fraud detection: I’ve got your number. Journal of Accountancy, 187, 79–83.
Paper not yet in RePEc: Add citation now
- Nigrini, M. J. (2012). Benford’s Law: Applications for forensic accounting, auditing, and fraud detection. John Wiley & Sons.
Paper not yet in RePEc: Add citation now
- Nigrini, M. J. (2015). Persistent patterns in stock returns, stock volumes, and accounting data in the U.S. Capital markets. Journal of Accounting, Auditing & Finance, 30(4), 541–557.
Paper not yet in RePEc: Add citation now
- Nigrini, M. J. (2017). Audit sampling using Benford’s law: A review of the literature with some new perspectives. Journal of Emerging Technologies in Accounting, 14(2), 29–46.
Paper not yet in RePEc: Add citation now
Noakes, M. A., & Rajaratnam, K. (2016). Testing market efficiency on the Johannesburg Stock Exchange using the overlapping serial test. Annals of Operations Research, 243(1), 273–300.
Nye, J., & Moul, C. (2007). The political economy of numbers: On the application of Benford’s Law to international macroeconomic statistics. The BE Journal of Macroeconomics, 7(1), 1–14.
Oztekin, A., Kizilaslan, R., Freund, S., & Iseri, A. (2016). A data analytic approach to forecasting daily stock returns in an emerging market. European Journal of Operational Research, 253(3), 697–710.
Patton, A. J., Ramadorai, T., & Streatfield, M. (2015). Change you can believe in? Hedge fund data revisions. Journal of Finance, 70(3), 963–999.
Pietronero, L., Tosatti, E., Tosatti, V., & Vespignani, A. (2001). Explaining the uneven distribution of numbers in nature: The laws of Benford and Zipf. Physica A, 293(1–2), 297–304.
- Rauch, B., Göttsche, M., Brähler, G., & Engel, S. (2011). Fact and fiction in EU-governmental economic data. German Economic Review, 12(3), 243–255.
Paper not yet in RePEc: Add citation now
Rauch, B., Göttsche, M., Brähler, G., & Kronfeld, T. (2014). Deficit versus social statistics: Empirical evidence for the effectiveness of Benford’s law. Applied Economics Letters, 21(3), 147–151.
Realdon, M. (2008). Credit default swap rates and stock prices. Applied Financial Economics Letters, 4(4), 241–248.
Riccioni, J., & Cerqueti, R. (2018). Regular paths in financial markets: Investigating the Benford’s law. Chaos, Solitons & Fractals, 107, 186–194.
Santos, D. G., & Ziegelmann, F. A. (2014). Volatility forecasting via MIDAS, HAR and their combination: An empirical comparative study for IBOVESPA. Journal of Forecasting, 33(4), 284–299.
- Satchell, S., & Knight, J. (2011). Forecasting volatility in the financial markets. Elsevier.
Paper not yet in RePEc: Add citation now
Shi, J., Ausloos, M., & Zhu, T. (2018). Benford’s law first significant digit and distribution distances for testing the reliability of financial reports in developing countries. Physica A, 492, 878–888.
- Sudjianto, A., Nair, S., Yuan, M., Zhang, A., Kern, D., & Cela-Diaz, F. (2010). Statistical methods for fighting financial crimes. Technometrics, 52, 5–19.
Paper not yet in RePEc: Add citation now
- Tödter, K. (2009). Benford’s Law as an indicator of fraud in economics. German Economic Review, 10(3), 339–351.
Paper not yet in RePEc: Add citation now
Venkatesh, K., Ravi, V., Prinzie, A., & Van den Poel, D. (2014). Cash demand forecasting in ATMs by clustering and neural networks. European Journal of Operational Research, 232(2), 383–392.
Vortelinos, D. I. (2017). Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH. Research in International Business and Finance, 39, 824–839.
- Yap, B. W., & Sim, C. H. (2011). Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation, 81(12), 2141–2155.
Paper not yet in RePEc: Add citation now
Zumbach, G. (2004). Volatility processes and volatility forecast with long memory. Quantitative Finance, 4(1), 70–86.