- Abdella, G. M., Kucukvar, M., Onat, N. C., Al-Yafay, H. M., & Bulak, M. E. (2020). Sustainability assessment and modeling based on supervised machine learning techniques: The case for food consumption. Journal of Cleaner Production, 251, 119661.
Paper not yet in RePEc: Add citation now
- Alaparthi S., M. Mishra M. (2020) Bidirectional encoder representations from transformers (BERT): A sentiment analysis odyssey. arXiv preprint arXiv:2007.01127 .
Paper not yet in RePEc: Add citation now
Anghel, L. D., Grigore, G. F., & Roşca, M. (2011). Cause-related marketing, part of corporate social responsibility and its influence upon consumers’ attitude. Amfiteatru Economic Journal, 13(29), 72–85.
Antoncic, M. (2020). Uncovering hidden signals for sustainable investing using big data: Artificial intelligence, machine learning and natural language processing. Journal of Risk Management in Financial Institutions, 13(2), 106–113.
Aouadi, A., & Marsat, S. (2018). Do ESG controversies matter for firm value? Evidence from international data. Journal of business ethics, 151(4), 1027–1047.
Bachmann R., Ehrlich G., Ruzic D., (2017) Firms and collective reputation: The Volkswagen emission scandal as a case study. CESifo working paper. 6805.
Barbeito-Caamaño, A., & Chalmeta, R. (2020). Using big data to evaluate corporate social responsibility and sustainable development practices. Corporate Social Responsibility and Environmental Management, 27(6), 2831–2848.
Barth, F., Eckert, C., Gatzert, N., & Scholz, H. (2022). Spillover effects from the volkswagen emissions scandal: An analysis of stock and corporate bond markets. Schmalenbach Journal of Business Research, 74, 37–76.
- Bhavsar, H., & Ganatra, A. (2012). A comparative study of training algorithms for supervised machine learning. International Journal of Soft Computing and Engineering (IJSCE)., 2(4), 2231–2307.
Paper not yet in RePEc: Add citation now
Biau, G., & Scornet, E. (2016). A random forest guided tour. TEST, 25, 197–227.
- Bonini, S., & Boraschi, D. (2012). Corporate scandals and capital structure (pp. 241–269). Netherlands: Springer.
Paper not yet in RePEc: Add citation now
Cai, Y., Jo, H., & Pan, C. (2012). Doing well while doing bad? CSR in controversial industry sectors. Journal of Business Ethics., 108(4), 467–480. https://doi.org/10.1007/s10551-011-1103-7 .
Capelle-Blancard, G. (2019). A. petit every little helps? ESG news and stock market reaction. Journal of Business Ethics., 157, 543–565.
- Capriotti, P. (2011). Communicating corporate social responsibility through the internet and social media. The handbook of communication and corporate social responsibility. 358–378.
Paper not yet in RePEc: Add citation now
- Carroll, A. B. (1979). A three-dimensional conceptual model of corporate performance. Academy of Management Review., 4(4), 497–505.
Paper not yet in RePEc: Add citation now
- Chawla N.V. (2010). Data mining for imbalanced datasets: An overview. Data mining and knowledge discovery handbook, pp. 875–886.
Paper not yet in RePEc: Add citation now
- Chen T., C. Guestrin. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794. LightGBM, https://lightgbm.readthedocs.io/ , [En ligne]. Available: https://lightgbm.readthedocs.io/en/latest/Parameters.html#is_unbalance .
Paper not yet in RePEc: Add citation now
- Chicco, D., Tötsch, N., Jurman, G., Chicco, D., Tötsch, N., & Jurman, G. (2021). The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData mining, 14(1), 1–22.
Paper not yet in RePEc: Add citation now
- Chu, C., Hsu, A. L., Chou, K. H., Bandettini, P., Lin, C., Alzheimer’s Disease Neuroimaging Initiative. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60(1), 59–70.
Paper not yet in RePEc: Add citation now
- Chylinski, M., & Chu, A. (2010). Consumer cynicism: Antecedents and consequences. European Journal of Marketing, 44(6), 796–837.
Paper not yet in RePEc: Add citation now
- Crilly, D., Zollo, M., & Hansen, T. (2012). Faking it or muddling through? Understanding decoupling in response to stakeholder pressures. Academy of Management Journal, 55(6), 1429–1448.
Paper not yet in RePEc: Add citation now
- D’Amato, V., D’Ecclesia, R., & Levantesi, S. (2021). Fundamental ratios as predictors of ESG scores: A machine learning approach. Decisions in Economics and Finance, 44, 1087–1110.
Paper not yet in RePEc: Add citation now
- Devlin J., Chang M. W., Lee K., Toutanova K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 .
Paper not yet in RePEc: Add citation now
- Dowling, J., & Pfeffer, J. (1975). Organizational legitimacy: social values and organizational behavior. Pacific Sociological Review, 18(1), 122–136.
Paper not yet in RePEc: Add citation now
Drempetic, S., Klein, C., & Zwergel, B. (2020). The influence of firm size on the ESG score: Corporate sustainability ratings under review. Journal of business ethics., 167, 333–360.
- Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861–874.
Paper not yet in RePEc: Add citation now
- Fombrun, C., & Shanley, M. (1990). What’s in a name? Reputation building and corporate strategy. Academy of management Journal., 33(2), 233–258.
Paper not yet in RePEc: Add citation now
- Freeman, R. E. (1984). Strategic management: a stakeholder approach. Cambridge University Pres.
Paper not yet in RePEc: Add citation now
Friede, G., Busch, T., & Bassen, A. (2015). ESG and financial performance: aggregated evidence from more than 2000 empirical studies. Journal of Sustainable, 5(4), 210–233.
- Gan, L., Wang, H., & Yang, Z. (2020). Machine learning solutions to challenges in finance: An application to the pricing of financial products. Technological Forecasting and Social Change., 153, 119928.
Paper not yet in RePEc: Add citation now
Garget, R., Aggarwal, H., Centobelli, P., & Cerchione, R. (2019). Extracting knowledge from big data for sustainability: A comparison of machine learning techniques. Sustainability, 11(23), 6669.
- Goutte C., Gaussier E. (2005). A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. chez Advances in Information Retrieval: 27th European Conference on IR Research, ECIR 2005, Santiago de Compostela, Spain.
Paper not yet in RePEc: Add citation now
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction (pp. 1–758). Springer.
Paper not yet in RePEc: Add citation now
- Hosmer D. W., Stanley L. (2000). Applied Logistic Regression, Wiley Series in Probability and Statistics.
Paper not yet in RePEc: Add citation now
- ISO 26000. (2010). Guidance on social responsibility, ISO 2010, Switzerland - https://iso26000.info/wp-content/uploads/2017/06/ISO-26000_2010_E_OBPpages.pdf .
Paper not yet in RePEc: Add citation now
- Jenkins, H. (2009). A ‘business opportunity’ model of corporate social responsibility for small- and medium-sized enterprises. Business Ethics: A European Review, 18(1), 21–36.
Paper not yet in RePEc: Add citation now
Jha, A., & Verma, N. (2023). Social media sustainability communication: An analysis of firm behaviour and stakeholder responses. Information Systems Frontiers, 25(2), 723–742. https://doi.org/10.1007/s10796-022-10257-6 .
- Karaman, Y. (2022). The effect of countries’ ESG ratings on sovereign credit default swaps: An Empirical Evidence on OECD Countries (2008–2019). World Journal of Entrepreneurship, Management and Sustainable Development., 18, 447–465.
Paper not yet in RePEc: Add citation now
- Khan, A., Baharudin, B., Lee, L. H., & Khan, K. (2010). A review of machine learning algorithms for text-documents classification. Journal of advances in information technology, 1(1), 4–20.
Paper not yet in RePEc: Add citation now
Kim, H., Cho, H., & Ryu, D. (2020). Corporate default predictions using machine learning: Literature review. Sustainability, 12(16), 6325.
- Kim, K., Kim, M., & Qian, C. (2018). Effects of corporate social responsibility on corporate financial performance: A competitive-action perspective. Journal of management, 44(3), 1097–1118.
Paper not yet in RePEc: Add citation now
- Klein, J., & Dawar, N. (2004). Corporate social responsibility and consumers’ attributions and brand evaluations in a product—Harm crisis. International Journal of Research in Marketing, 21(3), 203–217.
Paper not yet in RePEc: Add citation now
- Leo, M., Sharma, S., & Maddulety, K. (2019). Machine learning in banking risk management: A literature review. Risks, 7(1), 29.
Paper not yet in RePEc: Add citation now
Leonidou, C. N., & Skarmeas, D. (2017). Gray shades of green: Causes and consequences of green skepticism. Journal of Business Ethics, 144(2), 401–415.
Li, J., & Wu, D. (2020). Do corporate social responsibility engagements lead to real environmental, social, and governance impact? Management Science, 66(6), 2564–25880.
- Liu, M., Luo, X., & Lu, W. Z. (2023). Public perceptions of environmental, social, and governance (ESG) based on social media data: Evidence from China. Journal of Cleaner Production, 387, 135840.
Paper not yet in RePEc: Add citation now
- Mandhachitara, R., & Poolthong, Y. (2011). A model of customer loyalty and corporate social responsibility. Journal of Services Marketing, 25(2), 122–133.
Paper not yet in RePEc: Add citation now
- Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams engineering journal, 5(4), 1093–1113.
Paper not yet in RePEc: Add citation now
- Morsing, M., & Schultz, M. (2006). Corporate social responsibility communication: stakeholder information, response and involvement strategies. Business ethics: A European review., 15(54), 323–338.
Paper not yet in RePEc: Add citation now
- Nematzadeh A., Bang G., Liu X., Ma Z. (2019). Empirical study on detecting controversy in social media. arXiv, p. arXiv:1909.01093 .
Paper not yet in RePEc: Add citation now
- Osisanwo, F. Y., Akinsola, J. E. T., Awodele, O., Hinmikaiye, J. O., Olakanmi, O., & Akinjobi, J. (2017). Supervised machine learning algorithms: classification and comparison. International Journal of Computer Trends and Technology (IJCTT), 48(3), 128–138.
Paper not yet in RePEc: Add citation now
- Pietersma, D., Lacroix, R., Lefebvre, D., & Wade, K. M. (2003). Performance analysis for machine-learning experiments using small data sets. Computers and electronics in agriculture, 38(1), 1–17.
Paper not yet in RePEc: Add citation now
Pilař, L., Kvasničková Stanislavská, L., Pitrová, J., Krejčí, I., Tichá, I., & Chalupová, M. (2019). Twitter analysis of global communication in the field of sustainability. Sustainability, 11(24), 6958.
Pilgrim, K., & Bohnet-Joschko, S. (2022). Corporate social responsibility on twitter: A review of topics and digital communication strategies’ success factors. Sustainability, 14(24), 16769.
- S. Ray S. (2019). A quick review of machine learning algorithms. In 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon), pp. 35–39.
Paper not yet in RePEc: Add citation now
Samaniego-Medina, R., & Giráldez-Puig, P. (2022). Do sustainability risks affect credit ratings? Evidence From European Banks. Amfiteatru Economic., 24(61), 720–738.
Seele, P., & Lock, I. (2015). Instrumental and/or deliberative? A typology of CSR communication tools. Journal of Business Ethics, 131, 401–414.
Semenova, N., & Hassel, L. G. (2015). On the validity of environmental performance metrics. Journal of Business Ethics, 132, 249–258.
- Shakil, M. H. (2021). Environmental, social and governance performance and financial risk: Moderating role of ESG controversies and board gender diversity. Resources Policy, 72, 102–144.
Paper not yet in RePEc: Add citation now
- Sokolova M., Japkowicz N., Szpakowicz S. (2006). Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. chez AI 2006: Advances in Artificial Intelligence: 19th Australian Joint Conference on Artificial Intelligence, Hobart, Australia.
Paper not yet in RePEc: Add citation now
- Statista. (2023). www.statista.com [En ligne]. Available: https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/ .
Paper not yet in RePEc: Add citation now
- Steinberg, D. (2009). CART: Classification and regression trees. The top ten algorithms in data mining (pp. 93–216). Chapman and Hall/CRC.
Paper not yet in RePEc: Add citation now
- Supanti, D., Butcher, K., & Fredline, L. (2015). Enhancing the employer-employee relationship through corporate social responsibility (CSR) engagement. International Journal of Contemporary Hospitality Management, 27(7), 1479–1498.
Paper not yet in RePEc: Add citation now
- Svanberg, J., Ardeshiri, T., Samsten, I., Öhman, P., Neidermeyer, P. E., Rana, T., Semenova, N., & Danielson, M. (2022). Corporate governance performance ratings with machine learning. Intelligent Systems in Accounting, Finance and Management, 29(1), 50–68.
Paper not yet in RePEc: Add citation now
- Svanberg, J., Ardeshiri, T., Samsten, I., Öhman, P., Rana, T., & Danielson, M. (2022). Prediction of environmental controversies and development of a corporate environmental performance rating methodology. Journal of Cleaner Production., 344, 130979.
Paper not yet in RePEc: Add citation now
- Teoh T. T., Heng Q. K., Chia J. J., Liaw S. W., Yang M., Nguwi Y. Y. (2019). Machine learning-based corporate socia responsibility prediction. chez In 2019 IEEE International conference on cybernetics and intelligent systems (CIS) and IEEE conference on robotics, automation and mechatronics (RAM), Bangkok, THAILAND.
Paper not yet in RePEc: Add citation now
- Tolles, J., & Meurer, W. (2016). Logistic regression: Relating patient characteristics to outcomes. JAMA, 316(5), 533–534.
Paper not yet in RePEc: Add citation now
Treepongkaruna, S., Kyaw, K., & Jiraporn, P. (2022). Shareholder litigation rights and ESG controversies: A quasi-natural experiment. International Review of Financial Analysis, 84, 102396.
- Tsai, C. (2009). Feature selection in bankruptcy prediction. Knowledge-Based Systems, 22(2), 120–127.
Paper not yet in RePEc: Add citation now
- Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics, 7(1), 1–8.
Paper not yet in RePEc: Add citation now
Yu, H. C., Kuo, L., & Kao, M. F. (2017). The relationship between CSR disclosure and competitive advantage. Sustainability Accounting, Management and Policy Journal, 8, 547–570.