Akinc, D., & Vandebroek, M. (2018). Bayesian estimation of mixed logit models: Selecting an appropriate prior for the covariance matrix. Journal of Choice Modelling, 29, 133–151. https://doi.org/10.1016/j.jocm.2017.11.004 .
- Allenby, G. M., & Ginter, J. L. (1995). Using extremes to design products and segment markets. Journal of Marketing Research, 32(4), 392–403.
Paper not yet in RePEc: Add citation now
Allenby, G. M., Brazell, J. D., Howell, J. R., & Rossi, P. E. (2014). Economic valuation of product features. Quantitative Marketing and Economics, 12, 421–456. https://doi.org/10.1007/s11129-014-9150-x .
Arndt, A. D., Ford, J. B., Babin, B. J., & Luong, V. (2022). Collecting samples from online services: How to use screeners to improve data quality. International Journal of Research in Marketing, 39, 117–133. https://doi.org/10.1016/j.ijresmar.2021.05.001 .
Bacon, L., & Lenk, P. (2012). Augmenting discrete-choice data to identify common preference scales for inter-subject analyses. Quantitative Marketing and Economics, 10, 453–474. https://doi.org/10.1007/s11129-012-9124-9 .
- Bauer, R., Menrad, K., & Decker, T. (2015). Adaptive hybrid methods for choice-based conjoint analysis: A comparative study. International Journal of Marketing Studies, 7, 1–14. https://doi.org/10.5539/ijms.v7n1p1 .
Paper not yet in RePEc: Add citation now
- Becker, G. M., Degroot, M. H., & Marschak, J. (1964). Measuring utility by a single-response sequential method. Behavioral Science, 9, 226–232. https://doi.org/10.1002/bs.3830090304 .
Paper not yet in RePEc: Add citation now
- Befurt, R., MacMenamin, N., & Mohammad, A. P. (2023). Use of Conjoint Analysis in Litigation. In J. E. Gersen & J. H. Steckel (Eds.), The Cambridge Handbook of Marketing and the Law (pp. 221–235). Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Bijmolt, T. H., Van Heerde, H. J., & Pieters, R. G. (2005). New empirical generalizations on the determinants of price elasticity. Journal of Marketing Research, 42, 141–156. https://doi.org/10.1509/jmkr.42.2.141.62296 .
Paper not yet in RePEc: Add citation now
Brucks, M. (1985). The effects of product class knowledge on information search behavior. Journal of Consumer Research, 12, 1–16. https://doi.org/10.1086/209031 .
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., et al. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32.
de Groot, I. B., Otten, W., Dijs-Elsinga, J., Smeets, H. J., Kievit, J., & Marang-van de Mheen, P. J. (2012). Choosing between hospitals: The influence of the experiences of other patients. Medical Decision Making, 32, 764–778. https://doi.org/10.1177/0272989X12443416 .
- Derpanopoulos, G., Overmann, J., & Wazzan, C. P. (2022). The use of conjoint analysis in high-stakes litigation: A historical review up to Navarro et. al., v. Procter and Gamble, which withstood a rigorous Daubert challenge. Journal of the Patent and Trademark Office Society, 102(3), 502–526.
Paper not yet in RePEc: Add citation now
- Ding, M. (2007). An incentive-aligned mechanism for conjoint analysis. Journal of Marketing Research, 44, 214–223. https://doi.org/10.1509/jmkr.44.2.214 .
Paper not yet in RePEc: Add citation now
Ding, M., Grewal, R., & Liechty, J. C. (2005). Incentive-aligned conjoint analysis. Journal of Marketing Research, 42, 67–82. https://doi.org/10.1509/jmkr.42.1.67.56890 .
- Ding, M., Hauser, J. R., Dong, S., Dzyabura, D., Yang, Z., Su, C., et al. (2011). Unstructured direct elicitation of decision rules. Journal of Marketing Research, 48, 116–127. https://doi.org/10.1509/jmkr.48.1.116 .
Paper not yet in RePEc: Add citation now
Ding, M., Park, Y.-H., & Bradlow, E. T. (2009). Barter markets for conjoint analysis. Management Science, 55, 1003–1017. https://doi.org/10.1287/mnsc.1090.1003 .
Dong, S., Ding, M., & Huber, J. (2010). A simple mechanism to incentive-align conjoint experiments. International Journal of Research in Marketing, 27, 25–32. https://doi.org/10.1016/j.ijresmar.2009.09.004 .
- Dotson, J. P., Howell, J. R., Brazell, J. D., Otter, T., Lenk, P. J., MacEachern, S., et al. (2018). A probit model with structured covariance for similarity effects and source of volume calculations. Journal of Marketing Research, 55, 35–47. https://doi.org/10.1509/jmr.13.0240 .
Paper not yet in RePEc: Add citation now
Dowling, K., Guhl, D., Klapper, D., Spann, M., Stich, L., & Yegoryan, N. (2020). Behavioral biases in marketing. Journal of the Academy of Marketing Science, 48, 449–477. https://doi.org/10.1007/s11747-019-00699-x .
Eggers, F., & Sattler, H. (2009). Hybrid individualized two-level choice-based conjoint (HIT-CBC): A new method for measuring preference structures with many attribute levels. International Journal of Research in Marketing, 26, 108–118. https://doi.org/10.1016/j.ijresmar.2009.01.002 .
- Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayestian data analysis (3rd ed.). Chapman & Hall/CRC Boca Raton.
Paper not yet in RePEc: Add citation now
Gensler, S., Hinz, O., Skiera, B., & Theysohn, S. (2012). Willingness-to-pay estimation with choice-based conjoint analysis: Addressing extreme response behavior with individually adapted designs. European Journal of Operational Research, 219, 368–378. https://doi.org/10.1016/j.ejor.2012.01.002 .
Gilbride, T. J., & Allenby, G. M. (2004). A choice model with conjunctive, disjunctive, and compensatory screening rules. Marketing Science, 23, 391–406. https://doi.org/10.1287/mksc.1030.0032 .
- Green, P. E., & Krieger, A. M. (1988). Choice rules and sensitivity analysis in conjoint simulators. Journal of the Academy of Marketing Science, 16, 114–127. https://doi.org/10.1007/BF02723330 .
Paper not yet in RePEc: Add citation now
Guo, L. (2022). Testing the role of contextual deliberation in the compromise effect. Management Science, 68, 3975–4753. https://doi.org/10.1287/mnsc.2021.4038 .
Hauser, J. R., Eggers, F., & Selove, M. (2019). The strategic implications of scale in choice-based conjoint analysis. Marketing Science, 38, 913–1084. https://doi.org/10.1287/mksc.2019.1178 .
Huang, D., & Luo, L. (2016). Consumer preference elicitation of complex products using fuzzy support vector machine active learning. Marketing Science, 35, 445–464. https://doi.org/10.1287/mksc.2015.0946 .
- Huber, J., & Zwerina, K. (1996). The importance of utility balance in efficient choice designs. Journal of Marketing Research, 33(3), 307–317.
Paper not yet in RePEc: Add citation now
- Johnson, R. M., & Orme, B. K. (2007). A new approach to adaptive CBC. Sawtooth Software Inc. http://www.sawtoothsoftware.com/support/technical-papers/adaptive-cbc-papers/a-new-approach-to-adaptive-cbc-2007 . Accessed 18 June 2014.
Paper not yet in RePEc: Add citation now
Joo, M., Thompson, M. L., & Allenby, G. M. (2019). Optimal product design by sequential experiments in high dimensions. Management Science, 65, 3235–3254. https://doi.org/10.1287/mnsc.2018.3088 .
- Kamakura, W. A., & Russell, G. J. (1989). A probabilistic choice model for market segmentation and elasticity structure. Journal of Marketing Research, 26, 379–390. https://doi.org/10.1177/002224378902600401 .
Paper not yet in RePEc: Add citation now
Keller, K., Schlereth, C., & Hinz, O. (2021). Sample-based longitudinal discrete choice experiments: Preferences for electric vehicles over time. Journal of the Academy of Marketing Science, 49, 482–500. https://doi.org/10.1007/s11747-020-00758-8 .
- Kouki-Block, M., & Wellbrock, C.-M. (2021). Influenced by media brands? A conjoint experiment on the effect of media brands on online media planners’ decision-making. Journal of Media Business Studies, 1–23. https://doi.org/10.1080/16522354.2021.1899741 .
Paper not yet in RePEc: Add citation now
Kübler, R. V., Langmaack, M., Albers, S., & Hoyer, W. D. (2020). The impact of value-related crises on price and product-performance elasticities. Journal of the Academy of Marketing Science, 48, 776–794. https://doi.org/10.1007/s11747-019-00702-5 .
- Kuhfeld, W. F., Tobias, R. D., & Garratt, M. (1994). Efficient experimental design with marketing research applications. Journal of Marketing Research, 31(4), 545–557.
Paper not yet in RePEc: Add citation now
- Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174. https://doi.org/10.2307/2529310 .
Paper not yet in RePEc: Add citation now
Lenk, P. J., Desarbo, W. S., Green, P. E., & Young, M. R. (1996). Hierarchical bayes conjoint analysis: Recovery of partworth heterogeneity from reduced experimental designs. Marketing Science, 15, 173–191. https://doi.org/10.1287/mksc.15.2.173 .
- Li, Y., Krefeld-Schwalb, A., Wall, D. G., Johnson, E. J., Toubia, O., & Bartels, D. M. (2022). The more you ask, the less you get: When additional questions hurt external validity. Journal of Marketing Research, 59, 963–982. https://doi.org/10.1177/00222437211073581 .
Paper not yet in RePEc: Add citation now
Lichters, M., Bengart, P., Sarstedt, M., & Vogt, B. (2017). What really matters in attraction effect research: When choices have economic consequences. Marketing Letters, 28, 127–138. https://doi.org/10.1007/s11002-015-9394-6 .
Lichters, M., Wackershauser, V., Han, S., & Vogt, B. (2019). On the applicability of the BDM mechanism in product evaluation. Journal of Retailing and Consumer Services, 51, 1–7. https://doi.org/10.1016/j.jretconser.2019.02.021 .
Liu, Q., & Tang, Y. (2015). Construction of heterogeneous conjoint choice designs: A new approach. Marketing Science, 34, 346–366. https://doi.org/10.1287/mksc.2014.0897 .
- Louviere, J. J., & Woodworth, G. (1983). Design and analysis of simulated consumer choice or allocation experiments: An approach based on aggregate data. Journal of Marketing Research, 20(4), 350–367.
Paper not yet in RePEc: Add citation now
Lusk, J. L., Fields, D., & Prevatt, W. (2008). An incentive compatible conjoint ranking mechanism. American Journal of Agricultural Economics, 90, 487–498. https://doi.org/10.1111/j.1467-8276.2007.01119.x .
- McLean, K. G., Hanson, D. J., Jervis, S. M., & Drake, M. A. (2017). Consumer perception of retail pork bacon attributes using adaptive choice-based conjoint analysis and maximum differential scaling. Journal of Food Science, 82, 2659–2668. https://doi.org/10.1111/1750-3841.13934 .
Paper not yet in RePEc: Add citation now
- McShane, B. B., & Böckenholt, U. (2017). Single paper meta-analysis: Benefits for study summary, theory-testing, and replicability. Journal of Consumer Research, 43, 1048–1063. https://doi.org/10.1093/jcr/ucw085 .
Paper not yet in RePEc: Add citation now
- Meißner, M., Musalem, A., & Huber, J. (2016). Eye-tracking reveals processes that enable conjoint choices to become increasingly efficient with practice. Journal of Marketing Research, 53, 1–17. https://doi.org/10.1509/jmr.13.0467 .
Paper not yet in RePEc: Add citation now
Meyer, J., Shankar, V., & Berry, L. L. (2018). Pricing hybrid bundles by understanding the drivers of willingness to pay. Journal of the Academy of Marketing Science, 46, 497–515. https://doi.org/10.1007/s11747-017-0546-5 .
- Miller, K. M., Hofstetter, R., Krohmer, H., & Zhang, Z. J. (2011). How should consumers’ willingness to pay be measured? An empirical comparison of state-of-the-art approaches. Journal of Marketing Research, 48, 172–184. https://doi.org/10.1509/jmkr.48.1.172 .
Paper not yet in RePEc: Add citation now
- Morrin, M., & Ratneshwar, S. (2003). Does it make sense to use scents to enhance brand memory? Journal of Marketing Research, 40, 10–25. https://doi.org/10.1509/jmkr.40.1.10.19128 .
Paper not yet in RePEc: Add citation now
- Orme, B. K. (2020). Getting started with conjoint analysis: Strategies for product design and pricing research (4th ed.). Research Publishers LLC.
Paper not yet in RePEc: Add citation now
- Orme, B. K., & Chrzan, K. (2017). Becoming an expert in conjoint analysis: Choice modeling for pros. Sawtooth Software.
Paper not yet in RePEc: Add citation now
- Orme, B. K., & Heft, M. (1999). Predicting actual sales with CBC: How capturing heterogeneity improves results (pp. 183–199). Sawtooth Software, Inc.
Paper not yet in RePEc: Add citation now
Pachali, M. J., Kurz, P., & Otter, T. (2023). Omitted budget constraint bias and implications for competitive pricing. Journal of Marketing Research, 60, 968–986. https://doi.org/10.1177/00222437221145283 .
- Papies, D., Eggers, F., & Wlömert, N. (2011). Music for free? How free ad-funded downloads affect consumer choice. Journal of the Academy of Marketing Science, 39, 777–794. https://doi.org/10.1007/s11747-010-0230-5 .
Paper not yet in RePEc: Add citation now
Rao, A. (2015). Online content pricing: Purchase and rental markets. Marketing Science, 34, 430–451. https://doi.org/10.1287/mksc.2014.0896 .
Rao, V. R. (2014). Applied conjoint analysis. Springer.
- Sawtooth Software Inc. (2022a). Lighthouse Studio 9: Software for web interviewing and conjoint analysis. Sawtooth Software Inc.
Paper not yet in RePEc: Add citation now
- Sawtooth Software Inc. (2023). Lighthouse Studio: Software for web interviewing and conjoint analysis. Sawtooth Software Inc.
Paper not yet in RePEc: Add citation now
Schlereth, C., & Skiera, B. (2017). Two new features in discrete choice experiments to improve willingness-to-pay estimation that result in SDR and SADR: Separated (adaptive) dual response. Management Science, 63, 829–842. https://doi.org/10.1287/mnsc.2015.2367 .
Schmidt, J., & Bijmolt, T. H. A. (2020). Accurately measuring willingness to pay for consumer goods: A meta-analysis of the hypothetical bias. Journal of the Academy of Marketing Science, 48, 499–518. https://doi.org/10.1007/s11747-019-00666-6 .
- Searle, S. R., Speed, F. M., & Milliken, G. A. (1980). Population marginal means in the linear model: An alternative to least squares means. The American Statistician, 34, 216. https://doi.org/10.2307/2684063 .
Paper not yet in RePEc: Add citation now
- Sipos, P., & Voeth, M. (2015). Performance, motivation and ability – testing a pay-for-performance incentive mechanism for conjoint analysis. In Sawtooth Software (Ed.), Proceedings of the Sawtooth Software Conference. Orlando (pp. 143–157). Sawtooth Software Inc.
Paper not yet in RePEc: Add citation now
Toubia, O., de Jong, M. G., Stieger, D., & Füller, J. (2012). Measuring consumer preferences using conjoint poker. Marketing Science, 31, 138–156. https://doi.org/10.1287/mksc.1110.0672 .
- Toubia, O., Hauser, J. R., & Simester, D. I. (2004). Polyhedral methods for adaptive choice-based conjoint analysis. Journal of Marketing Research, 41, 116–131. https://doi.org/10.1509/jmkr.41.1.116.25082 .
Paper not yet in RePEc: Add citation now
Toubia, O., Simester, D. I., Hauser, J. R., & Dahan, E. (2003). Fast polyhedral adaptive conjoint estimation. Marketing Science, 22, 273–303. https://doi.org/10.1287/mksc.22.3.273.17743 .
Vadali, S. (2016). The performance of competitive and lottery incentive schemes vis-a-vis fixed fee incentive schemes in improving conjoint analysis. International Journal of Management and Marketing Research, 9(2), 81–100.
- Vohs, K. D., Baumeister, R. F., Schmeichel, B. J., Twenge, J. M., Nelson, N. M., & Tice, D. M. (2014). Making choices impairs subsequent self-control: A limited-resource account of decision making, self-regulation, and active initiative. Motivation Science, 1, 19–42. https://doi.org/10.1037/2333-8113.1.S.19 .
Paper not yet in RePEc: Add citation now
Voleti, S., Srinivasan, V., & Ghosh, P. (2017). An approach to improve the predictive power of choice-based conjoint analysis. International Journal of Research in Marketing, 34, 325–335. https://doi.org/10.1016/j.ijresmar.2016.08.007 .
- Wertenbroch, K., & Skiera, B. (2002). Measuring consumers’ willingness to pay at the point of purchase. Journal of Marketing Research, 39, 228–241. https://doi.org/10.1509/jmkr.39.2.228.19086 .
Paper not yet in RePEc: Add citation now
- Wlömert, N., & Eggers, F. (2016). Predicting new service adoption with conjoint analysis: External validity of BDM-based incentive-aligned and dual-response choice designs. Marketing Letters, 27, 195–210. https://doi.org/10.1007/s11002-014-9326-x .
Paper not yet in RePEc: Add citation now
- Wuebker, R., Hampl, N., & Wüstenhagen, R. (2015). The strength of strong ties in an emerging industry: Experimental evidence of the effects of status hierarchies and personal ties in venture capitalist decision making. Strategic Entrepreneurship Journal, 9, 167–187. https://doi.org/10.1002/sej.1188 .
Paper not yet in RePEc: Add citation now
- Yang, L., Toubia, O., & de Jong, M. G. (2015). A bounded rationality model of information search and choice in preference measurement. Journal of Marketing Research, 52, 166–183. https://doi.org/10.1509/jmr.13.0288 .
Paper not yet in RePEc: Add citation now
- Yang, L., Toubia, O., & de Jong, M. G. (2018). Attention, information processing, and choice in incentive-aligned choice experiments. Journal of Marketing Research, 55, 783–800. https://doi.org/10.1177/0022243718817004 .
Paper not yet in RePEc: Add citation now
Yu, J., Goos, P., & Vandebroek, M. (2011). Individually adapted sequential Bayesian conjoint-choice designs in the presence of consumer heterogeneity. International Journal of Research in Marketing, 28, 378–388. https://doi.org/10.1016/j.ijresmar.2011.06.002 .