- Ahmed S, Çakmak U, Shapiro A (2007) Coherent risk measures in inventory problems. Eur J Oper Res 182:226–238.
Paper not yet in RePEc: Add citation now
- Anantharam V, Borkar VS (2017) A variational formula for risk-sensitive reward. SIAM J Control Optim 55(2):961–988.
Paper not yet in RePEc: Add citation now
Anderson EW (2005) The dynamics of risk-sensitive allocations. J Econ Theory 125(2):93–150.
- Arapostathis A, Borkar VS (2021) Linear and dynamic programs for risk-sensitive cost minimization. In: Proceedings of the 60th IEEE conference on decision and control. IEEE, pp 3042–3047.
Paper not yet in RePEc: Add citation now
Arapostathis A, Borkar VS, Kumar SK (2016) Risk-sensitive control and an abstract Collatz–Wielandt formula. J Theor Probab 29(4):1458–1484.
- Arrow KJ (1971) The theory of risk aversion. In: Essays in the theory of risk-bearing. North Holland, pp 90–120.
Paper not yet in RePEc: Add citation now
- Asienkiewicz H, Jaśkiewicz A (2017) A note on a new class of recursive utilities in Markov decision processes. Applicationes Mathematicae 44:149–161.
Paper not yet in RePEc: Add citation now
- Balbus Ł, Jaśkiewicz A, Nowak AS (2015) The dynamics of risk-sensitive allocations. J Optim Theory Appl 165:295–315.
Paper not yet in RePEc: Add citation now
Barz C, Waldmann KH (2007) Risk-sensitive capacity control in revenue management. Math Methods Oper Res 65:565–579.
Basu A, Bhattacharyya T, Borkar VS (2008) A learning algorithm for risk-sensitive cost. Math Oper Res 33(4):880–898.
- Bäuerle N, Glauner A (2022) Markov decision processes with recursive risk measures. Eur J Oper Res 296(3):953–966.
Paper not yet in RePEc: Add citation now
- Bäuerle N, Jaśkiewicz A (2015) Risk-sensitive dividend problems. Eur J Oper Res 242(1):161–171.
Paper not yet in RePEc: Add citation now
- Bäuerle N, Jaśkiewicz A (2017) Optimal dividend payout model with risk sensitive preferences. Insurance Math Econom 73:82–93.
Paper not yet in RePEc: Add citation now
- Bäuerle N, Jaśkiewicz A (2018) Stochastic optimal growth model with risk sensitive preferences. J Econ Theory 173:181–200.
Paper not yet in RePEc: Add citation now
- Bäuerle N, Mundt A (2009) Dynamic mean-risk optimization in a binomial model. Math Methods Oper Res 70:219–239.
Paper not yet in RePEc: Add citation now
Bäuerle N, Ott J (2011) Markov decision processes with average-value-at-risk criteria. Math Methods Oper Res 74:361–379.
- Bäuerle N, Rieder U (2011) Markov decision processes with applications to finance. Springer, Berlin.
Paper not yet in RePEc: Add citation now
Bäuerle N, Rieder U (2014) More risk-sensitive Markov decision processes. Math Oper Res 39(1):105–120.
- Bäuerle N, Rieder U (2015) Partially observable risk-sensitive stopping problems in discrete time. In: Piunovskiy AB (ed) Modern trends of controlled stochastic processes: theory and Applications, vol II. Luniver Press, pp 12–31.
Paper not yet in RePEc: Add citation now
Bäuerle N, Rieder U (2017) Partially observable risk-sensitive Markov decision processes. Math Oper Res 42(4):1180–1196.
- Befekadu GK, Gupta V, Antsaklis PJ (2015) Risk-sensitive control under Markov modulated denial-of-service (DoS) attack strategies. IEEE Trans Autom Control 60(12):3299–3304.
Paper not yet in RePEc: Add citation now
Ben-Tal A, Teboulle M (2007) An old-new concept of convex risk measures: the optimized certainty equivalent. Math Financ 17(3):449–476.
- Bernoulli D (1954) Exposition of a new theory on the measurement of risk. Econometrica 22:23–36.
Paper not yet in RePEc: Add citation now
Bielecki T, Hernández-Hernández D, Pliska SR (1999) Risk sensitive control of finite state Markov chains in discrete time, with applications to portfolio management. Math Methods Oper Res 50:167–188.
- Bielecki T, Hernandez-Hernandez D, Pliska SR (1999b) Value iteration for controlled Markov chains with risk sensitive cost criterion. In: Proceedings of the 38th IEEE conference on decision and control. IEEE, pp 126–130.
Paper not yet in RePEc: Add citation now
- Biswas A, Borkar VS (2023) Ergodic risk-sensitive control—a survey. Annu Rev Control 55:118–141.
Paper not yet in RePEc: Add citation now
- Biswas A, Pradhan S (2022) Ergodic risk-sensitive control of Markov processes on countable state space revisited. ESAIM: Control Optim Cal Variat 28:26.
Paper not yet in RePEc: Add citation now
- Bloise G, Le Van C, Vailakis Y (2021) Do not blame Bellman: It is Koopmans’ fault. SSRN 3943709.
Paper not yet in RePEc: Add citation now
Bloise G, Vailakis Y (2018) Convex dynamic programming with (bounded) recursive utility. J Econ Theory 173:118–141.
Bommier A, Le Grand F (2019) Risk aversion and precautionary savings in dynamic settings. Manage Sci 65(3):1386–1397.
- Borkar VS (2001) A sensitivity formula for risk-sensitive cost and the actor-critic algorithm. Syst Control Lett 44(5):339–346.
Paper not yet in RePEc: Add citation now
Borkar VS (2002) Q-learning for risk-sensitive control. Math Oper Res 27(2):294–311.
- Borkar VS (2017) Linear and dynamic programming approaches to degenerate risk-sensitive reward processes. In: 56th Annual IEEE conference on decision and control. IEEE, pp 3714–3718.
Paper not yet in RePEc: Add citation now
Borkar VS, Meyn SP (2002) Risk-sensitive optimal control for Markov decision processes with monotone cost. Math Oper Res 27(1):192–209.
Bouakiz M, Sobel MJ (1992) Inventory control with an exponential utility criterion. Oper Res 40(3):603–608.
- Brau-Rojas A, Cavazos-Cadena R, Fernández-Gaucherand E (1998) Controlled Markov chains with risk-sensitive criteria: some (counter) examples. In: Proceedings of the 37th IEEE conference on decision and control. IEEE, pp 1853–1858.
Paper not yet in RePEc: Add citation now
- Braun DA, Nagengast AJ, Wolpert DM (2011) Risk-sensitivity in sensorimotor control. Front Hum Neurosci 5:1.
Paper not yet in RePEc: Add citation now
Bushaj S, Büyüktahtakın İE, Haight RG (2022) Risk-averse multi-stage stochastic optimization for surveillance and operations planning of a forest insect infestation. Eur J Oper Res 299(3):1094–1110.
Cavazos-Cadena R (2010) Optimality equations and inequalities in a class of risk-sensitive average cost Markov decision chains. Math Methods Oper Res 71(1):47–84.
Cavazos-Cadena R (2018) Characterization of the optimal risk-sensitive average cost in denumerable Markov decision chains. Math Oper Res 43(3):1025–1050.
- Cavazos-Cadena R, Cruz-Suárez D (2017) Discounted approximations to the risk-sensitive average cost in finite Markov chains. J Math Anal Appl 450(2):1345–1362.
Paper not yet in RePEc: Add citation now
- Cavazos-Cadena R, Fernández-Gaucherand E (2000) The vanishing discount approach in Markov chains with risk-sensitive criteria. IEEE Trans Autom Control 45(10):1800–1816.
Paper not yet in RePEc: Add citation now
- Cavazos-Cadena R, Hernández-Hernández D (2002) Solution to the risk-sensitive average optimality equation in communicating Markov decision chains with finite state space: An alternative approach. Math Methods Oper Res 56:473–479.
Paper not yet in RePEc: Add citation now
- Cavazos-Cadena R, Hernández-Hernández D (2005) A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains. Ann Appl Probab 15(1A):175–212.
Paper not yet in RePEc: Add citation now
- Cavazos-Cadena R, Hernández-Hernández D (2009) Necessary and sufficient conditions for a solution to the risk-sensitive Poisson equation on a finite state space. Syst Control Lett 58(4):254–258.
Paper not yet in RePEc: Add citation now
Cavazos-Cadena R, Hernández-Hernández D (2011) Discounted approximations for risk-sensitive average criteria in Markov decision chains with finite state space. Math Oper Res 36(1):133–146.
Cavazos-Cadena R, Hernández-Hernández D (2016) A characterization of the optimal certainty equivalent of the average cost via the Arrow-Pratt sensitivity function. Math Oper Res 41(1):224–235.
Cavazos-Cadena R, Montes-de Oca R (2003) The value iteration algorithm in risk-sensitive average Markov decision chains with finite state space. Math Oper Res 28(4):752–776.
- Cavazos-Cadena R, Montes-De-Oca R (2005) Nonstationary value iteration in controlled Markov chains with risk-sensitive average criterion. J Appl Probab 42(4):905–918.
Paper not yet in RePEc: Add citation now
- Cavazos-Cadena R, Salem-Silva F (2010) The discounted method and equivalence of average criteria for risk-sensitive Markov decision processes on borel spaces. Appl Math Optim 61(2):167–190.
Paper not yet in RePEc: Add citation now
- Çavuş O, Ruszczyński A (2014) Risk-averse control of undicounted transient Markov models. SIAM J Control Optim 52(6):3935–3966.
Paper not yet in RePEc: Add citation now
- Chapman MP, Fauß M, Smith KM (2023) On optimizing the conditional value-at-risk of a maximum cost for risk-averse safety analysis. IEEE Trans Autom Control 68(6):3720–3727.
Paper not yet in RePEc: Add citation now
- Chapman MP, Smith KM (2021) Classical risk-averse control for a finite-horizon Borel model. IEEE Control Syst Lett 6:1525–1530.
Paper not yet in RePEc: Add citation now
- Chen X, Wei Q (2023) Risk-sensitive average optimality for discrete-time Markov decision processes. SIAM J Control Optim 61(1):72–104.
Paper not yet in RePEc: Add citation now
- Choi S, Ruszczyński A (2011) A multi-product risk-averse newsvendor with exponential utility function. Eur J Oper Res 214:78–84.
Paper not yet in RePEc: Add citation now
- Chow Y, Tamar A, Mannor S, et al (2015) Risk-sensitive and robust decision-making: a CVaR optimization approach. In: Proceedings of the 28th international conference on neural information processing systems, ACMDL, pp 1522–1530.
Paper not yet in RePEc: Add citation now
- Chu S, Zhang Y (2014) Markov decision processes with iterated coherent risk measures. Int J Control 87(11):2286–2293.
Paper not yet in RePEc: Add citation now
- Chung KJ, Sobel MJ (1987) Discounted MDP’s: distribution functions and exponential utility maximization. SIAM J Control Optim 25(1):49–62.
Paper not yet in RePEc: Add citation now
- Coache A, Jaimungal S (2023) Reinforcement learning with dynamic convex risk measures. Math Financ. https://doi.org/10.1111/mafi.12388 .
Paper not yet in RePEc: Add citation now
- Collins E, McNamara J (1998) Finite-horizon dynamic optimisation when the terminal reward is a concave functional of the distribution of the final state. Adv Appl Probab 30(1):122–136.
Paper not yet in RePEc: Add citation now
- Coraluppi SP, Marcus SI (1999) Risk-sensitive and minimax control of discrete-time, finite-state Markov decision processes. Automatica 35(2):301–309.
Paper not yet in RePEc: Add citation now
- Dai Pra P, Meneghini L, Runggaldier WJ (1996) Connections between Stochastic control and dynamic games. Math Control Signals Syst 9:303–326.
Paper not yet in RePEc: Add citation now
- Dembo A, Zeitouni O (1998) Large deviations techniques and applications. Springer, Berlin.
Paper not yet in RePEc: Add citation now
Denardo EV, Park H, Rothblum UG (2007) Risk-sensitive and risk-neutral multiarmed bandits. Math Oper Res 32(2):374–394.
- Denardo EV, Rothblum UG (2006) A turnpike theorem for a risk-sensitive Markov decision process with stopping. SIAM J Control Optim 45(2):414–431.
Paper not yet in RePEc: Add citation now
- Di Masi GB, Stettner Ł (1999) Risk-sensitive control of discrete-time Markov processes with infinite horizon. SIAM J Control Optim 38(1):61–78.
Paper not yet in RePEc: Add citation now
- Di Masi GB, Stettner Ł (2000) Infinite horizon risk sensitive control of discrete time Markov processes with small risk. Syst Control Lett 40(1):15–20.
Paper not yet in RePEc: Add citation now
- Di Masi GB, Stettner Ł (2007) Infinite horizon risk sensitive control of discrete time Markov processes under minorization property. SIAM J Control Optim 46(1):231–252.
Paper not yet in RePEc: Add citation now
- Ding R, Feinberg EA (2022) Sequential optimization of CVaR. ArXiv preprint arXiv:2211.07288 .
Paper not yet in RePEc: Add citation now
- Dowson O, Morton DP, Pagnoncelli BK (2020) Multistage stochastic programs with the entropic risk measure. Optim Online https://optimization-online.org/?p=16662 .
Paper not yet in RePEc: Add citation now
- Dowson O, Morton DP, Pagnoncelli BK (2022) Incorporating convex risk measures into multistage stochastic programming algorithms. Ann Oper Res. https://doi.org/10.1007/s10479-022-04977-w .
Paper not yet in RePEc: Add citation now
Duffie D, Epstein LG (1992) Stochastic differential utility. Econometrica J Econom Soc 1:353–394.
- Dupačová J, Kozmík V (2015) Structure of risk-averse multistage stochastic programs. OR Spectrum 37:559–582.
Paper not yet in RePEc: Add citation now
Epstein LG, Zin SE (1989) Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework. Econometrica 57(4):937–969.
- Fei Y, Yang Z, Chen Y et al (2021) Exponential Bellman equation and improved regret bounds for risk-sensitive reinforcement learning. Adv Neural Inf Process Syst 34:20436–20446.
Paper not yet in RePEc: Add citation now
Feinstein Z, Rudloff B (2017) A recursive algorithm for multivariate risk measures and a set-valued Bellman’s principle. J Global Optim 68(1):47–69.
- Fernández-Gaucherand E, Marcus SI (1997) Risk-sensitive optimal control of hidden Markov models: Structural results. IEEE Trans Autom Control 42(10):1418–1422.
Paper not yet in RePEc: Add citation now
- Filar J, Koos V (1997) Competitive Markov Decision Processes. Springer, Berlin.
Paper not yet in RePEc: Add citation now
- Fleming WH, Hernández-Hernández D (1997) Risk-sensitive control of finite state machines on an infinite horizon I. SIAM J Control Optim 35(5):1790–1810.
Paper not yet in RePEc: Add citation now
- Föllmer H, Schied A (2010) Convex and coherent risk measures. Encyclop Quant Financ 1:355–363.
Paper not yet in RePEc: Add citation now
- Gönsch J (2017) A survey on risk-averse and robust revenue management. Eur J Oper Res 263(2):337–348.
Paper not yet in RePEc: Add citation now
Gönsch J, Hassler M, Schur R (2018) Optimizing Conditional Value-at-Risk in dynamic pricing. OR Spectrum 40:711–750.
Goswami A, Rana N, Siu TK (2022) Regime switching optimal growth model with risk sensitive preferences. J Math Econ 101:102702.
- Guigues V (2016) Convergence analysis of sampling-based decomposition methods for risk-averse multistage stochastic convex programs. SIAM J Optim 26(4):2468–2494.
Paper not yet in RePEc: Add citation now
- Guo X, Singh R, Kumar P et al (2018) A risk-sensitive approach for packet inter-delivery time optimization in networked cyber-physical systems. IEEE/ACM Trans Networking 26(4):1976–1989.
Paper not yet in RePEc: Add citation now
Hambly B, Xu R, Yang H (2023) Recent advances in reinforcement learning in finance. Math Financ 33(3):437–503.
- Hansen LP, Sargent TJ (1995) Discounted linear exponential quadratic Gaussian control. IEEE Trans Autom Control 40(5):968–971.
Paper not yet in RePEc: Add citation now
- Hau JL, Petrik M, Ghavamzadeh M (2023) Entropic risk optimization in discounted MDPs. In: International conference on artificial intelligence and statistics. PMLR, pp 47–76.
Paper not yet in RePEc: Add citation now
- Hernández-Hernández D, Marcus SI (1996) Risk sensitive control of Markov processes in countable state space. Syst Control Lett 29(3):147–155 (Corrigendum in System and Control Letters (1998) 34:105–106).
Paper not yet in RePEc: Add citation now
- Hernández-Hernández D, Marcus SI (1999) Existence of risk-sensitive optimal stationary policies for controlled Markov processes. Appl Math Optim 40:273–285.
Paper not yet in RePEc: Add citation now
- Hernández-Lerma O, Lasserre JB (1996) Discrete-time Markov control processes, basic optimality criteria. Springer, Berlin.
Paper not yet in RePEc: Add citation now
Homem-de-Mello T, Pagnoncelli BK (2016) Risk aversion in multistage stochastic programming: a modeling and algorithmic perspective. Eur J Oper Res 249(1):188–199.
Howard RA, Matheson JE (1972) Risk-sensitive Markov decision processes. Manage Sci 18(7):356–369.
- Huang A, Leqi L, Lipton ZC, et al (2021) On the convergence and optimality of policy gradient for Markov coherent risk. arXiv preprint arXiv:2103.02827 .
Paper not yet in RePEc: Add citation now
- Huang T, Chen J (2024) Markov decision processes under risk sensitivity: a discount vanishing approach. J Math Anal Appl 533(2):128026.
Paper not yet in RePEc: Add citation now
Iancu DA, Petrik M, Subramanian D (2015) Tight approximations of dynamic risk measures. Math Oper Res 40(3):655–682.
- Iwamoto S (1999) Conditional decision processes with recursive function. J Math Anal Appl 230(1):193–210.
Paper not yet in RePEc: Add citation now
- Iwamoto S (2004) Stochastic optimization of forward recursive functions. J Math Anal Appl 292(1):73–83.
Paper not yet in RePEc: Add citation now
- Jacobson D (1973) Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games. IEEE Trans Autom Control 18(2):124–131.
Paper not yet in RePEc: Add citation now
- James MR, Baras JS, Elliott RJ (1994) Risk-sensitive control and dynamic games for partially observed discrete-time nonlinear systems. IEEE Trans Autom Control 39(4):780–792.
Paper not yet in RePEc: Add citation now
Jaquette SC (1976) A utility criterion for Markov decision processes. Manag Sci 23(1):43–49.
- Jaśkiewicz A (2007) A note on risk-sensitive control of invariant models. Syst Control Lett 56(11–12):663–668.
Paper not yet in RePEc: Add citation now
- Jaśkiewicz A (2007) Average optimality for risk-sensitive control with general state space. Ann Appl Probab 17(2):654–675.
Paper not yet in RePEc: Add citation now
- Jaśkiewicz A (2008) A note on negative dynamic programming for risk-sensitive control. Oper Res Lett 36(5):531–534.
Paper not yet in RePEc: Add citation now
- Jaśkiewicz A, Nowak AS (2014) Robust Markov control processes. J Math Anal Appl 420(2):1337–1353.
Paper not yet in RePEc: Add citation now
- Jiang DR, Powell WB (2016) Practicality of nested risk measures for dynamic electric vehicle charging. ArXiv preprint arXiv:1605.02848 .
Paper not yet in RePEc: Add citation now
- Kadota Y, Kurano M, Yasuda M (2006) Discounted Markov decision processes with utility constraints. Comput Math Appl 51(2):279–284.
Paper not yet in RePEc: Add citation now
- Koenig S, Simmons RG (1994) Risk-sensitive planning with probabilistic decision graphs. In: Principles of knowledge representation and reasoning. Elsevier, pp 363–373.
Paper not yet in RePEc: Add citation now
- Kozmík V, Morton DP (2015) Evaluating policies in risk-averse multi-stage stochastic programming. Math Program 152:275–300.
Paper not yet in RePEc: Add citation now
Kraft H, Seifried FT, Steffensen M (2013) Consumption-portfolio optimization with recursive utility in incomplete markets. Finance Stochast 17:161–196.
- Kreps DM (1977) Decision problems with expected utility critera, I: upper and lower convergent utility. Math Oper Res 2(1):45–53.
Paper not yet in RePEc: Add citation now
Kreps DM (1977) Decision problems with expected utility criteria, II: stationarity. Math Oper Res 2(3):266–274.
Kreps DM, Porteus EL (1978) Temporal resolution of uncertainty and dynamic choice theory. Econometrica 46(1):185–200.
- Le Tallec Y (2007) Robust, risk-sensitive, and data-driven control of Markov decision processes. Phd thesis, Massachusetts Institute of Technology, available at https://dspace.mit.edu/handle/1721.1/38598 .
Paper not yet in RePEc: Add citation now
- Luenberger DG (2014) Investement Science. Oxford University Press, Oxford.
Paper not yet in RePEc: Add citation now
Luo Y, Young ER (2010) Risk-sensitive consumption and savings under rational inattention. Am Econ J Macroecon 2(4):281–325.
- Maceira MEP, Marzano L, Penna DDJ et al (2015) Application of CVaR risk aversion approach in the expansion and operation planning and for setting the spot price in the Brazilian hydrothermal interconnected system. Int J Electr Power Energy Syst 72:126–135.
Paper not yet in RePEc: Add citation now
- Mannor S, Tsitsiklis J (2011) Mean-variance optimization in Markov decision processes. In: Proceedings of the 28th international conference on machine learning. ICML, pp 177–184.
Paper not yet in RePEc: Add citation now
Marinacci M, Montrucchio L (2010) Unique solutions for stochastic recursive utilities. J Econ Theory 145(5):1776–1804.
- Markowitz HM (1952) Portfolio selection. J Financ 7(1):77–91.
Paper not yet in RePEc: Add citation now
- Martyr R, Moriarty J, Perninge M (2022) Discrete-time risk-aware optimal switching with non-adapted costs. Adv Appl Probab 54(2):625–655.
Paper not yet in RePEc: Add citation now
- Mazouchi M, Nageshrao S, Modares H (2022) Automating vehicles by risk-averse preview-based Q-learning algorithm. IFAC-PapersOnLine 55(15):105–110.
Paper not yet in RePEc: Add citation now
- Medina JR, Lee D, Hirche S (2012) Risk-sensitive optimal feedback control for haptic assistance. In: IEEE international conference on robotics and automation. IEEE, pp 1025–1031.
Paper not yet in RePEc: Add citation now
- Miao J (2020) Economic Dynamics in Discrete Time. MIT press.
Paper not yet in RePEc: Add citation now
- Moldovan T, Abbeel P (2012) Risk aversion in Markov decision processes via near-optimal Chernoff bounds. Adv Neural Inf Process Syst 4:3131–3139.
Paper not yet in RePEc: Add citation now
- Osogami T (2011) Iterated risk measures for risk-sensitive Markov decision processes with discounted cost. In: Proceedings of the 27th conference on uncertainty in artificial intelligence, pp 573–580.
Paper not yet in RePEc: Add citation now
- Ott J (2010) A Markov decision model for a surveillance application and risk-sensitive Markov decision processes. PhD Thesis, Karlsruhe Institute of Technology. https://publikationen.bibliothek.kit.edu/1000020835 .
Paper not yet in RePEc: Add citation now
Ozaki H, Streufert PA (1996) Dynamic programming for non-additive stochastic objectives. J Math Econ 25(4):391–442.
- Pflug GC (2006) A value-of-information approach to measuring risk in multi-period economic activity. J Bank Finance 30(2):695–715.
Paper not yet in RePEc: Add citation now
- Pflug GC, Pichler A (2016) Time-inconsistent multistage stochastic programs: Martingale bounds. Eur J Oper Res 249(1):155–163.
Paper not yet in RePEc: Add citation now
- Pflug GC, Ruszczyński (2005) Measuring risk for income streams. Comput Optim Appl 32:161–178.
Paper not yet in RePEc: Add citation now
Philpott A, de Matos V, Finardi E (2013) On solving multistage stochastic programs with coherent risk measures. Oper Res 61(4):957–970.
Pitera M, Stettner Ł (2023) Discrete-time risk sensitive portfolio optimization with proportional transaction costs. Math Financ 33(4):1287–1313.
- Piunovskiy AB (2013) Examples in Markov decision processes. Imperial College Press, London.
Paper not yet in RePEc: Add citation now
- Powell WB (2022) Reinforcement learning and Stochastic optimization: a unified framework for sequential decisions. Wiley, Boca Raton.
Paper not yet in RePEc: Add citation now
- Pratt JW (1964) Risk aversion in the small and in the large. Econometrica 32:122–136.
Paper not yet in RePEc: Add citation now
- Puterman ML (2014) Markov decision processes: discrete stochastic dynamic programming. Wiley, Boca Raton.
Paper not yet in RePEc: Add citation now
- Ren G, Stachurski J (2018) Dynamic programming with recursive preferences: optimality and applications. ArXiv preprint arXiv:1812.05748 .
Paper not yet in RePEc: Add citation now
Rothblum UG (1984) Multiplicative Markov decision chains. Math Oper Res 9(1):6–24.
- Royden HL (1988) Real analysis. Prentice Hall, New Jersey.
Paper not yet in RePEc: Add citation now
Rudloff B, Street A, Valladão DM (2014) Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences. Eur J Oper Res 234(3):743–750.
- Ruszczyński A (2010) Risk-averse dynamic programming for Markov decision processes. Math Program 125:235–261.
Paper not yet in RePEc: Add citation now
- Sargent T, Stachurski J (2023) Dynamic Programming, Vol. I: Foundations. https://dp.quantecon.org .
Paper not yet in RePEc: Add citation now
- Schäl M (1975) Conditions for optimality in dynamic programming and for the limit of n-stage optimal policies to be optimal. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 32:179–196.
Paper not yet in RePEc: Add citation now
- Schäl M (1983) Stationary policies in dynamic programming models under compactness assumptions. Math Oper Res 8(3):366–372.
Paper not yet in RePEc: Add citation now
- Schlosser R (2015) A stochastic dynamic pricing and advertising model under risk aversion. J Revenue Pricing Manag 14:451–468.
Paper not yet in RePEc: Add citation now
Schlosser R (2016) Stochastic dynamic multi-product pricing with dynamic advertising and adoption effects. J Revenue Pric Manag 15:153–169.
- Schlosser R (2020) Risk-sensitive control of Markov decision processes: A moment-based approach with target distributions. Comput Oper Res 123:104997.
Paper not yet in RePEc: Add citation now
Schur R, Gönsch J, Hassler M (2019) Time-consistent, risk-averse dynamic pricing. Eur J Oper Res 277(2):587–603.
Shapiro A (2012) Minimax and risk averse multistage stochastic programming. Eur J Oper Res 219(3):719–726.
Shapiro A (2021) Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming. Eur J Oper Res 288(1):1–13.
Shapiro A, Tekaya W, da Costa JP et al (2013) Risk neutral and risk averse stochastic dual dynamic programming method. Eur J Oper Res 224(2):375–391.
- Shen Y, Stannat W, Obermayer K (2013) Risk-sensitive Markov control processes. SIAM J Control Optim 51(5):3652–3672.
Paper not yet in RePEc: Add citation now
- Shen Y, Stannat W, Obermayer K (2014) A unified framework for risk-sensitive Markov control processes. In: Proceedings of the 53rd IEEE Conference on Decision and Control, IEEE, pp 1073–1078.
Paper not yet in RePEc: Add citation now
- Sladkỳ K (2008) Growth rates and average optimality in risk-sensitive Markov decision chains. Kybernetika 44(2):205–226.
Paper not yet in RePEc: Add citation now
- Sladkỳ K (2018) Risk-sensitive average optimality in Markov decision processes. Kybernetika 54(6):1218–1230.
Paper not yet in RePEc: Add citation now
Staino A, Russo E (2020) Nested Conditional Value-at-Risk portfolio selection: a model with temporal dependence driven by market-index volatility. Eur J Oper Res 280(2):741–753.
Stettner Ł (1999) Risk sensitive portfolio optimization. Math Methods Oper Res 50(3):463–474.
- Stettner Ł (2005) Discrete time risk sensitive portfolio optimization with consumption and proportional transaction costs. Applicationes Mathematicae 4(32):395–404.
Paper not yet in RePEc: Add citation now
- Stettner Ł (2023) Certainty equivalent control of discrete time Markov processes with the average reward functional. Syst Control Lett 181:105627.
Paper not yet in RePEc: Add citation now
- Sutton RS, Barto AG (2018) Reinforcement Learning: An Introduction. MIT Press, Cambridge.
Paper not yet in RePEc: Add citation now
- Tamar A, Chow Y, Ghavamzadeh M et al (2016) Sequential decision making with coherent risk. IEEE Trans Autom Control 62(7):3323–3338.
Paper not yet in RePEc: Add citation now
- Uğurlu K (2017) Controlled Markov decision processes with AVaR criteria for unbounded costs. J Comput Appl Math 319:24–37.
Paper not yet in RePEc: Add citation now
- Uğurlu K (2018) Robust optimal control using conditional risk mappings in infinite horizon. J Comput Appl Math 344:275–287.
Paper not yet in RePEc: Add citation now
- Von Neumann J, Morgenstern O (2007) Theory of Games and Economic Behavior (60th Anniversary Commemorative Edition). Princeton University Press, Princeton.
Paper not yet in RePEc: Add citation now
Weil P (1990) Nonexpected utility in macroeconomics. Q J Econ 105(1):29–42.
Weil P (1993) Precautionary savings and the permanent income hypothesis. Rev Econ Stud 60(2):367–383.
- Whittle P (1981) Risk-sensitive linear/quadratic/Gaussian control. Adv Appl Probab 13(4):764–777.
Paper not yet in RePEc: Add citation now
Wozabal D, Rameseder G (2020) Optimal bidding of a virtual power plant on the spanish day-ahead and intraday market for electricity. Eur J Oper Res 280(2):639–655.
Xia L (2020) Risk-sensitive Markov decision processes with combined metrics of mean and variance. Prod Oper Manag 29(12):2808–2827.
- Xia L, Glynn PW (2022) Risk-sensitive Markov decision processes with long-run CVaR criterion. ArXiv preprint arXiv:2210.08740 .
Paper not yet in RePEc: Add citation now
- Xu W, Gao X, He X (2023) Regret bounds for Markov decision processes with recursive optimized certainty equivalents. ArXiv preprint arXiv:2301.12601 .
Paper not yet in RePEc: Add citation now
Zhang W, Rahimian H, Bayraksan G (2016) Decomposition algorithms for risk-averse multistage stochastic programs with application to water allocation under uncertainty. INFORMS J Comput 28(3):385–404.