create a website

Comparative analysis of the TabNet algorithm and traditional machine learning algorithms for landslide susceptibility assessment in the Wanzhou Region of China. (2024). Jie, Zhou ; Xin, Zhang ; Yingxu, Song ; Yingze, Song ; Degang, Yang.
In: Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards.
RePEc:spr:nathaz:v:120:y:2024:i:8:d:10.1007_s11069-024-06521-4.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 59

References cited by this document

Cocites: 70

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Balancing method for landslide monitoring samples and construction of an early warning system. (2025). Chen, Qiao ; Zhang, Shaojie ; Sang, Xuejia ; Tang, Dan ; Xie, Zhaoyang ; Liu, Dunlong.
    In: Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards.
    RePEc:spr:nathaz:v:121:y:2025:i:6:d:10.1007_s11069-024-07063-5.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. AghaKouchak A, Huning LS, Chiang F, Sadegh M, Vahedifard F, Mazdiyasni O et al (2018) How do natural hazards cascade to cause disasters? Nature Publishing Group, London.

  2. Arik SÖ, Pfister T (2021) Tabnet: attentive interpretable tabular learning. In: Proceedings of the AAAI conference on artificial intelligence, vol 35, pp 6679–6687.
    Paper not yet in RePEc: Add citation now
  3. Azarafza M, Azarafza M, Akgün H, Atkinson PM, Derakhshani R (2021) Deep learning-based landslide susceptibility mapping. Sci Rep 11(1):24112.
    Paper not yet in RePEc: Add citation now
  4. Ba Q, Chen Y, Deng S, Yang J, Li H (2018) A comparison of slope units and grid cells as mapping units for landslide susceptibility assessment. Earth Sci Inf 11:373–388.
    Paper not yet in RePEc: Add citation now
  5. Biau G, Scornet E (2016) A random forest guided tour. Test 25:197–227.

  6. Bogaard TA, Greco R (2016) Landslide hydrology: from hydrology to pore pressure. Wiley Interdiscip Rev Water 3(3):439–459.
    Paper not yet in RePEc: Add citation now
  7. Boulesteix A-L, Bender A, Lorenzo Bermejo J, Strobl C (2012) Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations. Brief Bioinform 13(3):292–304.
    Paper not yet in RePEc: Add citation now
  8. Buckland M, Gey F (1994) The relationship between recall and precision. J Am Soc Inf Sci 45(1):12–19.

  9. Cemiloglu A, Zhu L, Mohammednour AB, Azarafza M, Nanehkaran YA (2023) Landslide susceptibility assessment for Maragheh county, Iran, using the logistic regression algorithm. Land. https://doi.org/10.3390/land12071397 .

  10. Cohen I, Huang Y, Chen J, Benesty J, Benesty J, Chen J et al (2009) Pearson correlation coefficient. In: Noise reduction in speech processing, 1–4.
    Paper not yet in RePEc: Add citation now
  11. Craney TA, Surles JG (2002) Model-dependent variance inflation factor cutoff values. Qual Eng 14(3):391–403.
    Paper not yet in RePEc: Add citation now
  12. DeMaris A (1995) A tutorial in logistic regression. J Marriage Fam 57:956–968.
    Paper not yet in RePEc: Add citation now
  13. Fawcett T (2006) An introduction to roc analysis. Pattern Recogn Lett 27(8):861–874.
    Paper not yet in RePEc: Add citation now
  14. Fernández A, Garcia S, Herrera F, Chawla NV (2018) Smote for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J Artif Intell Res 61:863–905.
    Paper not yet in RePEc: Add citation now
  15. Ghorbanzadeh O, Xu Y, Zhao H, Wang J, Zhong Y, Zhao D et al (2022) The outcome of the 2022 landslide4sense competition: advanced landslide detection from multisource satellite imagery. IEEE J Sel Top Appl Earth Observ Remote Sens 15:9927–9942.
    Paper not yet in RePEc: Add citation now
  16. Gong Q, Zhang J, Wang J (2018) Application of GIS-based back propagation artificial neural networks and logistic regression for shallow landslide susceptibility mapping in South China-take Meijiang river basin as an example. Open Civ Eng J 12(1):21–34.
    Paper not yet in RePEc: Add citation now
  17. Gong W, Juang CH, Wasowski J (2021) Geohazards and human settlements: Lessons learned from multiple relocation events in Badong, China-engineering geologist’s perspective. Eng Geol 285:106051.
    Paper not yet in RePEc: Add citation now
  18. Henderson P, Ferrari V (2017) End-to-end training of object class detectors for mean average precision. In: Computer vision–ACCV 2016: 13th Asian conference on computer vision, Taipei, Taiwan, Nov 20–24, 2016, revised selected papers, part v 13, pp 198–213.
    Paper not yet in RePEc: Add citation now
  19. Hong H, Liu J, Bui DT, Pradhan B, Acharya TD, Pham BT, Ahmad BB (2018) Landslide susceptibility mapping using j48 decision tree with adaboost, bagging and rotation forest ensembles in the Guangchang area (China). CATENA 163:399–413.
    Paper not yet in RePEc: Add citation now
  20. Huang C, Zhou Q, Zhou L, Cao Y (2021) Ancient landslide in Wanzhou district analysis from 2015 to 2018 based on ALOS-2 data by QPS-InSAR. Nat Hazards 109:1777–1800.

  21. Huang F, Chen J, Liu W, Huang J, Hong H, Chen W (2022) Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology 408:108236.
    Paper not yet in RePEc: Add citation now
  22. Huang F, Wang Y, Dong Z, Wu L, Guo Z, Zhang T (2019) Regional landslide susceptibility mapping based on grey relational degree model. Earth Sci 44(2):664–676.
    Paper not yet in RePEc: Add citation now
  23. Huang F, Zhang J, Zhou C, Wang Y, Huang J, Zhu L (2020a) A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 17:217–229.
    Paper not yet in RePEc: Add citation now
  24. Huang Y, Zhao L (2018) Review on landslide susceptibility mapping using support vector machines. CATENA 165:520–529. https://doi.org/10.1016/j.catena.2018.03.003 .
    Paper not yet in RePEc: Add citation now
  25. Iverson RM, George DL, Allstadt K, Reid ME, Collins BD, Vallance JW et al (2015) Landslide mobility and hazards: implications of the 2014 Oso disaster. Earth Planet Sci Lett 412:197–208.
    Paper not yet in RePEc: Add citation now
  26. Joseph LP, Joseph EA, Prasad R (2022) Explainable diabetes classification using hybrid Bayesian optimized TabNet architecture. Comput Biol Med 151:106178.
    Paper not yet in RePEc: Add citation now
  27. Kawamura Y, Dewan AM, Veenendaal B, Hayashi M, Shibuya T, Kitahara I, Ishii K (2014) Using GIS to develop a mobile communications network for disaster-damaged areas. Int J Digit Earth 7(4):279–293.
    Paper not yet in RePEc: Add citation now
  28. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W et al (2017) Lightgbm: A highly efficient gradient boosting decision tree. In: Advances in neural information processing systems, vol 30.
    Paper not yet in RePEc: Add citation now
  29. Lan H, Wu F, Zhou CH, Wang S (2002) Analysis on susceptibility of GIS based landslide triggering factors in Yunnan Xiaojiang watershed. Chin J Rock Mech Eng 21(10):1500–1506.
    Paper not yet in RePEc: Add citation now
  30. LaValley MP (2008) Logistic regression. Circulation 117(18):2395–2399.
    Paper not yet in RePEc: Add citation now
  31. Lee S, Lee M-J, Jung H-S, Lee S (2020) Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea. Geocarto Int 35(15):1665–1679.
    Paper not yet in RePEc: Add citation now
  32. Liu S, Wang L, Zhang W, He Y, Pijush S (2023) A comprehensive review of machine learning based methods in landslide susceptibility mapping. Geol J 58:2283–2301.
    Paper not yet in RePEc: Add citation now
  33. Maćkiewicz A, Ratajczak W (1993) Principal components analysis (PCA). Comput Geosci 19(3):303–342.
    Paper not yet in RePEc: Add citation now
  34. Masrur A, Yu M, Luo W, Dewan A (2020) Space-time patterns, change, and propagation of Covid-19 risk relative to the intervention scenarios in Bangladesh. Int J Environ Res Public Health 17(16):5911.
    Paper not yet in RePEc: Add citation now
  35. Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Abderrahmane B (2020) Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev 207:103225.
    Paper not yet in RePEc: Add citation now
  36. Moayedi H, Mehrabi M, Mosallanezhad M, Rashid ASA, Pradhan B (2019) Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng Comput 35:967–984.
    Paper not yet in RePEc: Add citation now
  37. Mutlu B, Nefeslioglu HA, Sezer EA, Akcayol MA, Gokceoglu C (2019) An experimental research on the use of recurrent neural networks in landslide susceptibility mapping. ISPRS Int J Geo-Inf 8(12):578.
    Paper not yet in RePEc: Add citation now
  38. Nanehkaran YA, Chen B, Cemiloglu A, Chen J, Anwar S, Azarafza M, Derakhshani R (2023) Riverside landslide susceptibility overview: leveraging artificial neural networks and machine learning in accordance with the united nations (un) sustainable development goals. Water. https://doi.org/10.3390/w15152707 .
    Paper not yet in RePEc: Add citation now
  39. Nikoobakht S, Azarafza M, Akgün H, Derakhshani R (2022) Landslide susceptibility assessment by using convolutional neural network. Appl Sci. https://doi.org/10.3390/app12125992 .
    Paper not yet in RePEc: Add citation now
  40. Pandey VK, Sharma KK, Pourghasemi HR, Bandooni SK (2019) Sedimentological characteristics and application of machine learning techniques for landslide susceptibility modelling along the highway corridor Nahan to Rajgarh (Himachal Pradesh), India. CATENA 182:104150.
    Paper not yet in RePEc: Add citation now
  41. Passman MA, McLafferty RB, Lentz MF, Nagre SB, Iafrati MD, Bohannon WT et al (2011) Validation of venous clinical severity score (VCSS) with other venous severity assessment tools from the American venous forum, national venous screening program. J Vasc Surg 54(6):2S-9S.
    Paper not yet in RePEc: Add citation now
  42. Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz Watershed, Iran. Nat Hazards 63:965–996.

  43. Ranjan G, Verma AK, Radhika S (2019) K-nearest neighbors and grid search cv based real time fault monitoring system for industries. In: 2019 IEEE 5th international conference for convergence in technology (i2ct), pp 1–5.
    Paper not yet in RePEc: Add citation now
  44. Ri J, Kim H (2020) G-mean based extreme learning machine for imbalance learning. Digit Signal Process 98:102637.
    Paper not yet in RePEc: Add citation now
  45. Sameen MI, Pradhan B, Lee S (2020) Application of convolutional neural networks featuring bayesian optimization for landslide susceptibility assessment. CATENA 186:104249.
    Paper not yet in RePEc: Add citation now
  46. Shah C, Du Q, Xu Y (2022) Enhanced TabNet: attentive interpretable tabular learning for hyperspectral image classification. Remote Sens 14(3):716.
    Paper not yet in RePEc: Add citation now
  47. Shao X, Ma S, Xu C, Zhang P, Wen B, Tian Y et al (2019) Planet image-based inventorying and machine learning-based susceptibility mapping for the landslides triggered by the 2018 Mw6.6 Tomakomai, Japan earthquake. Remote Sens 11(8):978.
    Paper not yet in RePEc: Add citation now
  48. Shirvani Z (2020) A holistic analysis for landslide susceptibility mapping applying geographic object-based random forest: a comparison between protected and non-protected forests. Remote Sens 12(3):434.
    Paper not yet in RePEc: Add citation now
  49. Speiser JL, Miller ME, Tooze J, Ip E (2019) A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst Appl 134:93–101.
    Paper not yet in RePEc: Add citation now
  50. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293.
    Paper not yet in RePEc: Add citation now
  51. Tang H, Wasowski J, Juang CH (2019) Geohazards in the three gorges reservoir area, China—lessons learned from decades of research. Eng Geol 261:105267.
    Paper not yet in RePEc: Add citation now
  52. Thara D, PremaSudha B, Xiong F (2019) Auto-detection of epileptic seizure events using deep neural network with different feature scaling techniques. Pattern Recogn Lett 128:544–550.
    Paper not yet in RePEc: Add citation now
  53. Wang M, Qiao J-P (2013) Reservoir-landslide hazard assessment based on GIS: a case study in Wanzhou section of the three gorges reservoir. J Mt Sci 10:1085–1096.
    Paper not yet in RePEc: Add citation now
  54. Yacouby R, Axman D (2020) Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models. In: Proceedings of the first workshop on evaluation and comparison of NLP systems, pp 79–91.
    Paper not yet in RePEc: Add citation now
  55. Yan F, Zhang Q, Ye S, Ren B (2019) A novel hybrid approach for landslide susceptibility mapping integrating analytical hierarchy process and normalized frequency ratio methods with the cloud model. Geomorphology 327:170–187.
    Paper not yet in RePEc: Add citation now
  56. Yan J, Xu T, Yu Y, Xu H (2021) Rainfall forecast model based on the TabNet model. Water 13(9):1272.
    Paper not yet in RePEc: Add citation now
  57. Zeng T, Wu L, Peduto D, Glade T, Hayakawa YS, Yin K (2023) Ensemble learning framework for landslide susceptibility mapping: different basic classifier and ensemble strategy. Geosci Front 14:101645.
    Paper not yet in RePEc: Add citation now
  58. Zhang W, He Y, Wang L, Liu S, Meng X (2023) Landslide susceptibility mapping using random forest and extreme gradient boosting: a case study of Fengjie, Chongqing. Geol J 58:2372–2387.
    Paper not yet in RePEc: Add citation now
  59. Zhou C, Yin K, Cao Y, Ahmed B, Li Y, Catani F, Pourghasemi HR (2018) Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the three gorges reservoir area, China. Comput Geosci 112:23–37.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Typhoon related cascading fault chain dynamic evolution model and risk mitigation in distribution systems. (2025). Wang, Chengshan ; Yan, Jinyue ; Du, Ying ; Zhang, Junxiang ; Chen, Yuntian ; Ji, Haoran.
    In: Applied Energy.
    RePEc:eee:appene:v:379:y:2025:i:c:s0306261924022864.

    Full description at Econpapers || Download paper

  2. Comparative analysis of the TabNet algorithm and traditional machine learning algorithms for landslide susceptibility assessment in the Wanzhou Region of China. (2024). Jie, Zhou ; Xin, Zhang ; Yingxu, Song ; Yingze, Song ; Degang, Yang.
    In: Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards.
    RePEc:spr:nathaz:v:120:y:2024:i:8:d:10.1007_s11069-024-06521-4.

    Full description at Econpapers || Download paper

  3. Detection and Attribution of Meteorological Drought to Anthropogenic Climate Change (Case Study: Ajichay basin, Iran). (2024). Firoozi, Fatemeh ; Asadi, Esmaeil ; Fard, Ahmad Fakheri.
    In: Climatic Change.
    RePEc:spr:climat:v:177:y:2024:i:8:d:10.1007_s10584-024-03779-2.

    Full description at Econpapers || Download paper

  4. The Mechanism and Effects of the Digital Economy on Urban Resilience: An Empirical Test Based on 110 Cities in the Yangtze River Economic Belt. (2024). Chen, Xiaolong ; Sun, Zhimo ; Zhang, Yuqing.
    In: Sustainability.
    RePEc:gam:jsusta:v:17:y:2024:i:1:p:30-:d:1551990.

    Full description at Econpapers || Download paper

  5. Scenario mapping for critical infrastructure failure under typhoon rainfall: A dependency and causality approach. (2024). Yang, Zhen ; Duan, Yao ; Shen, Yang ; Zhao, Xiaozhe ; Guo, LI.
    In: Reliability Engineering and System Safety.
    RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024002667.

    Full description at Econpapers || Download paper

  6. The Use of Binary Choice Forests to Model and Estimate Discrete Choices. (2024). Tang, Zhuodong ; Chen, Ningyuan ; Gallego, Guillermo.
    In: Papers.
    RePEc:arx:papers:1908.01109.

    Full description at Econpapers || Download paper

  7. Increasing risk of cascading hazards in the central Himalayas. (2023). Adhikari, Basanta R ; Rakhal, Biplob ; Panthi, Jeeban ; Ghimire, Ganesh R ; Sharma, Sanjib ; Kumar, Saurav ; Maskey, Shreedhar ; Pradhanang, Soni M ; Nepal, Santosh ; Talchabhadel, Rocky.
    In: Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards.
    RePEc:spr:nathaz:v:119:y:2023:i:2:d:10.1007_s11069-022-05462-0.

    Full description at Econpapers || Download paper

  8. Elevation-dependent intensification of fire danger in the western United States. (2023). Abatzoglou, John T ; Adamowski, Jan ; Rad, Arash Modaresi ; Aghakouchak, Amir ; Sadegh, Mojtaba ; Alizadeh, Mohammad Reza.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37311-4.

    Full description at Econpapers || Download paper

  9. Multifractal descriptors ergodically characterize non-ergodic multiplicative cascade processes. (2023). Mangalam, Madhur ; Kelty-Stephen, Damian G.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:617:y:2023:i:c:s0378437123002066.

    Full description at Econpapers || Download paper

  10. Natural hazards and climate change are not drivers of disasters. (2022). Ismail-Zadeh, Alik.
    In: Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards.
    RePEc:spr:nathaz:v:111:y:2022:i:2:d:10.1007_s11069-021-05100-1.

    Full description at Econpapers || Download paper

  11. Hazardous wastes, adverse impacts, and management strategies: a way forward to environmental sustainability. (2022). Ali, Nisar ; Bilal, Muhammad ; Qian, Guoqing ; Duanmu, Chuansong ; Khan, Adnan ; Yang, Yong ; Malik, Sumeet.
    In: Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development.
    RePEc:spr:endesu:v:24:y:2022:i:8:d:10.1007_s10668-021-01867-2.

    Full description at Econpapers || Download paper

  12. Urban form, traffic volume, and air quality: A spatiotemporal stratified approach. (2022). Tian, YE ; Yao, Xiaobai.
    In: Environment and Planning B.
    RePEc:sae:envirb:v:49:y:2022:i:1:p:92-113.

    Full description at Econpapers || Download paper

  13. Performance Analysis of Machine Learning Algorithms for Energy Demand–Supply Prediction in Smart Grids. (2022). Isaac, Sherrin John ; Cebekhulu, Eric ; Onumanyi, Adeiza James.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:5:p:2546-:d:755932.

    Full description at Econpapers || Download paper

  14. Research on SSA-LSTM-Based Slope Monitoring and Early Warning Model. (2022). Li, YU ; Nie, Wen ; Yang, Shasha ; Liu, Cong ; Jin, Anjie.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:16:p:10246-:d:891067.

    Full description at Econpapers || Download paper

  15. Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications. (2022). Tsiftsis, Spyros ; Pleniou, Magdalini ; Tsiripidis, Ioannis ; Xystrakis, Fotios ; Karadimou, Elpida ; Kiziridis, Diogenis A ; Mastrogianni, Anna.
    In: Land.
    RePEc:gam:jlands:v:11:y:2022:i:3:p:406-:d:768076.

    Full description at Econpapers || Download paper

  16. Electromyographic Analysis of Paraspinal Muscles of Scoliosis Patients Using Machine Learning Approaches. (2022). Fan, Yunli ; Liang, Ruixin ; To, Kai-Tsun Michael ; Yip, Joanne.
    In: IJERPH.
    RePEc:gam:jijerp:v:19:y:2022:i:3:p:1177-:d:730057.

    Full description at Econpapers || Download paper

  17. A Digital Twin Approach for Improving Estimation Accuracy in Dynamic Thermal Rating of Transmission Lines. (2022). de Stefani, Jacopo ; Paldino, Gian Marco ; Bontempi, Gianluca ; de Caro, Fabrizio ; Villacci, Domenico ; Vaccaro, Alfredo.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:6:p:2254-:d:774882.

    Full description at Econpapers || Download paper

  18. The unequal distribution of water risks and adaptation benefits in coastal Bangladesh. (2022). Alam, Shah M ; Gani, Mohammed Sarfaraz ; Salehin, Mashfiqus ; Paprocki, Kasia ; Hall, Jim W ; Barbour, Emily J ; Borgomeo, Edoardo.
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:113320.

    Full description at Econpapers || Download paper

  19. A machine learning based control of chaotic systems. (2022). Garcia, P.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:155:y:2022:i:c:s096007792100984x.

    Full description at Econpapers || Download paper

  20. Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance. (2022). Okasa, Gabriel.
    In: Papers.
    RePEc:arx:papers:2201.12692.

    Full description at Econpapers || Download paper

  21. Policy evaluation of waste pricing programs using heterogeneous causal effect estimation. (2022). Valente, Marica.
    In: Papers.
    RePEc:arx:papers:2010.01105.

    Full description at Econpapers || Download paper

  22. The Effect of Sport in Online Dating: Evidence from Causal Machine Learning. (2021). Lechner, Michael ; Okasa, Gabriel ; Boller, Daniel.
    In: Economics Working Paper Series.
    RePEc:usg:econwp:2021:04.

    Full description at Econpapers || Download paper

  23. Mathematical optimization in classification and regression trees. (2021). Carrizosa, Emilio ; Morales, Dolores Romero ; Molero-Rio, Cristina.
    In: TOP: An Official Journal of the Spanish Society of Statistics and Operations Research.
    RePEc:spr:topjnl:v:29:y:2021:i:1:d:10.1007_s11750-021-00594-1.

    Full description at Econpapers || Download paper

  24. Intense extreme hydro-climatic events take a toll on society. (2021). Chu, Xuefeng ; Bozorg-Haddad, Omid ; Loaiciga, Hugo A ; Zolghadr-Asli, Babak.
    In: Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards.
    RePEc:spr:nathaz:v:108:y:2021:i:2:d:10.1007_s11069-021-04749-y.

    Full description at Econpapers || Download paper

  25. The Roots of Inequality: Estimating Inequality of Opportunity from Regression Trees and Forests. (2021). Hufe, Paul ; Brunori, Paolo ; Mahler, Daniel Gerszon.
    In: IZA Discussion Papers.
    RePEc:iza:izadps:dp14689.

    Full description at Econpapers || Download paper

  26. The Effect of Sport in Online Dating: Evidence from Causal Machine Learning. (2021). Lechner, Michael ; Okasa, Gabriel ; Boller, Daniel.
    In: IZA Discussion Papers.
    RePEc:iza:izadps:dp14259.

    Full description at Econpapers || Download paper

  27. A Classification Analysis of the High and Low Levels of Global Competence of Secondary Students: Insights from 25 Countries/Regions. (2021). Hu, Xiaoyue.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:19:p:11053-:d:650714.

    Full description at Econpapers || Download paper

  28. Estimation of Daily Water Table Level with Bimonthly Measurements in Restored Ombrotrophic Peatland. (2021). Godbout, Stephane ; Pacheco, Sebastian Gutierrez ; Hugron, Sandrine ; Lagace, Robert ; Rochefort, Line.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:10:p:5474-:d:554160.

    Full description at Econpapers || Download paper

  29. Machine Learning Data Imputation and Prediction of Foraging Group Size in a Kleptoparasitic Spider. (2021). Lin, Yu-Da ; Su, Yong-Chao ; Moi, Sin-Hua ; Wu, Cheng-Yu ; Yang, Cheng-Hong.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:4:p:415-:d:502614.

    Full description at Econpapers || Download paper

  30. A Novel Framework for Mining Social Media Data Based on Text Mining, Topic Modeling, Random Forest, and DANP Methods. (2021). Hsiao, Yi-Hao ; Yang, Chia-Lee ; Huang, Chi-Yo.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:17:p:2041-:d:621437.

    Full description at Econpapers || Download paper

  31. Towards Lightweight URL-Based Phishing Detection. (2021). Pitropakis, Nikolaos ; Butnaru, Andrei ; Mylonas, Alexios.
    In: Future Internet.
    RePEc:gam:jftint:v:13:y:2021:i:6:p:154-:d:574241.

    Full description at Econpapers || Download paper

  32. Development and Validation of a Data-Driven Fault Detection and Diagnosis System for Chillers Using Machine Learning Algorithms. (2021). Kim, Woo Hyun.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:7:p:1945-:d:528337.

    Full description at Econpapers || Download paper

  33. Rice Mapping Using a BiLSTM-Attention Model from Multitemporal Sentinel-1 Data. (2021). Xu, LU ; Li, Liutong ; Zhang, Hong ; Sun, Chunling ; Wang, Chao.
    In: Agriculture.
    RePEc:gam:jagris:v:11:y:2021:i:10:p:977-:d:652196.

    Full description at Econpapers || Download paper

  34. A random forest based approach for predicting spreads in the primary catastrophe bond market. (2021). Chen, Yining ; Barrieu, Pauline ; Makariou, Despoina.
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:111529.

    Full description at Econpapers || Download paper

  35. Food insecurity and compound environmental shocks in Nepal: Implications for a changing climate. (2021). Liang, Xin-Zhong ; Murtugudde, Raghu ; Randell, Heather ; Jiang, Chengsheng ; Sapkota, Amir.
    In: World Development.
    RePEc:eee:wdevel:v:145:y:2021:i:c:s0305750x21001236.

    Full description at Econpapers || Download paper

  36. Random forests for global sensitivity analysis: A selective review. (2021). Lambert-Lacroix, Sophie ; Poggi, Jean-Michel ; Antoniadis, Anestis.
    In: Reliability Engineering and System Safety.
    RePEc:eee:reensy:v:206:y:2021:i:c:s0951832020308073.

    Full description at Econpapers || Download paper

  37. Predicting access to healthful food retailers with machine learning. (2021). McCluskey, Jill ; Amin, Modhurima ; Badruddoza, Syed.
    In: Food Policy.
    RePEc:eee:jfpoli:v:99:y:2021:i:c:s0306919220301895.

    Full description at Econpapers || Download paper

  38. Mixed random forest, cointegration, and forecasting gasoline prices. (2021). Escribano, Alvaro ; Wang, Dandan.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:37:y:2021:i:4:p:1442-1462.

    Full description at Econpapers || Download paper

  39. A random forest based approach for predicting spreads in the primary catastrophe bond market. (2021). Chen, Yining ; Barrieu, Pauline ; Makariou, Despoina.
    In: Insurance: Mathematics and Economics.
    RePEc:eee:insuma:v:101:y:2021:i:pb:p:140-162.

    Full description at Econpapers || Download paper

  40. Behaviour associated with the presence of a school sports ground: Visual information for policy makers. (2021). Vala, Roman ; Drazdilova, Pavla ; Kromer, Pavel ; Valova, Marie ; Platos, Jan.
    In: Children and Youth Services Review.
    RePEc:eee:cysrev:v:128:y:2021:i:c:s0190740921002267.

    Full description at Econpapers || Download paper

  41. Policy Evaluation of Waste Pricing Programs Using Heterogeneous Causal Effect Estimation. (2021). Valente, Marica.
    In: Discussion Papers of DIW Berlin.
    RePEc:diw:diwwpp:dp1980.

    Full description at Econpapers || Download paper

  42. The Effect of Sport in Online Dating: Evidence from Causal Machine Learning. (2021). Lechner, Michael ; Okasa, Gabriel ; Boller, Daniel.
    In: Papers.
    RePEc:arx:papers:2104.04601.

    Full description at Econpapers || Download paper

  43. Predicting Food Crises. (2020). Andree, Bo ; Spencer, Phoebe Girouard ; Wang, Dieter ; Johannes, Bo Pieter ; Chamorro, Andres Fernando ; Kraay, Aart C.
    In: Policy Research Working Paper Series.
    RePEc:wbk:wbrwps:9412.

    Full description at Econpapers || Download paper

  44. The role of traditional discounted cash flows in the tragedy of the horizon: another inconvenient truth. (2020). Cifuentes, Arturo ; Baroud, H ; Vahedifard, F ; Espinoza, D ; Gentzoglanis, A ; Bisogno, M ; Luccioni, L ; Rojo, J ; Morris, J.
    In: Mitigation and Adaptation Strategies for Global Change.
    RePEc:spr:masfgc:v:25:y:2020:i:4:d:10.1007_s11027-019-09884-3.

    Full description at Econpapers || Download paper

  45. Heterogeneous Treatment Effects of Nudge and Rebate:Causal Machine Learning in a Field Experiment on Electricity Conservation. (2020). Murakami, Kayo ; Ushifusa, Yoshiaki ; Ida, Takanori ; Shimada, Hideki.
    In: Discussion papers.
    RePEc:kue:epaper:e-20-003.

    Full description at Econpapers || Download paper

  46. The Role of Education in Increasing Awareness and Reducing Impact of Natural Hazards. (2020). Mander, Ulo ; Aunap, Raivo ; Scott, Michael ; Holbrook, Jack ; Parn, Jaan ; Cerulli, David ; Kull, Ain.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:18:p:7623-:d:414217.

    Full description at Econpapers || Download paper

  47. Forecasting Spare Parts Demand of Military Aircraft: Comparisons of Data Mining Techniques and Managerial Features from the Case of South Korea. (2020). Suh, Jong Hwan ; Choi, Boram.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:15:p:6045-:d:390809.

    Full description at Econpapers || Download paper

  48. Comparative Performance of Machine Learning Algorithms in the Prediction of Indoor Daylight Illuminances. (2020). Ngarambe, Jack ; Kim, Gon ; Yun, Geun Young ; Irakoze, Amina.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:11:p:4471-:d:365768.

    Full description at Econpapers || Download paper

  49. Exploring the Space of Possibilities in Cascading Disasters with Catastrophe Dynamics. (2020). Wang, Ziqi ; Mignan, Arnaud.
    In: IJERPH.
    RePEc:gam:jijerp:v:17:y:2020:i:19:p:7317-:d:424585.

    Full description at Econpapers || Download paper

  50. Analysis of Necessary Support in the 2011 Great East Japan Earthquake Disaster Area. (2020). Tsuboyama-Kasaoka, Nobuyo ; Harada, Moeka ; Ishikawa-Takata, Kazuko.
    In: IJERPH.
    RePEc:gam:jijerp:v:17:y:2020:i:10:p:3475-:d:359013.

    Full description at Econpapers || Download paper

  51. Application of Gated Recurrent Unit (GRU) Neural Network for Smart Batch Production Prediction. (2020). Li, Xuechen ; Ma, Xinfang ; Zhang, Shicheng ; Xiao, Fengchao ; Wang, Fei.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:22:p:6121-:d:449193.

    Full description at Econpapers || Download paper

  52. Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship. (2020). Du, Yuquan ; Wang, Shuaian ; Yan, Ran.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:138:y:2020:i:c:s1366554519308555.

    Full description at Econpapers || Download paper

  53. A semi-“smart predict then optimize” (semi-SPO) method for efficient ship inspection. (2020). Wang, Shuaian ; Yan, Ran ; Fagerholt, Kjetil.
    In: Transportation Research Part B: Methodological.
    RePEc:eee:transb:v:142:y:2020:i:c:p:100-125.

    Full description at Econpapers || Download paper

  54. Sparsity in optimal randomized classification trees. (2020). Blanquero, Rafael ; Carrizosa, Emilio ; Morales, Dolores Romero ; Molero-Rio, Cristina.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:284:y:2020:i:1:p:255-272.

    Full description at Econpapers || Download paper

  55. Separating the signal from the noise – Financial machine learning for Twitter. (2020). Fischer, Thomas G ; Schnaubelt, Matthias ; Krauss, Christopher.
    In: Journal of Economic Dynamics and Control.
    RePEc:eee:dyncon:v:114:y:2020:i:c:s0165188920300634.

    Full description at Econpapers || Download paper

  56. Ensemble Learning with Statistical and Structural Models. (2020). Mao, Jiaming ; Xu, Jingzhi.
    In: Papers.
    RePEc:arx:papers:2006.05308.

    Full description at Econpapers || Download paper

  57. Targeting predictors in random forest regression. (2020). Christensen, Bent Jesper ; Borup, Daniel ; Muhlbach, Nicolaj Norgaard ; Nielsen, Mikkel Slot.
    In: Papers.
    RePEc:arx:papers:2004.01411.

    Full description at Econpapers || Download paper

  58. Targeting predictors in random forest regression. (2020). Christensen, Bent Jesper ; Borup, Daniel ; Muhlbach, Nicolaj N ; Nielsen, Mikkel S.
    In: CREATES Research Papers.
    RePEc:aah:create:2020-03.

    Full description at Econpapers || Download paper

  59. Assessing the Importance of an Attribute in a Demand SystemStructural Model versus Machine Learning. (2019). McCluskey, Jill ; Amin, Modhurima ; Badruddoza, Syed.
    In: Working Papers.
    RePEc:ris:wsuwpa:2019_005.

    Full description at Econpapers || Download paper

  60. Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning. (2019). Montequin, Vicente Rodriguez ; Garcia, Manuel J ; Villanueva, Joaquin M ; Fernandez, Francisco Ortega.
    In: Complexity.
    RePEc:hin:complx:2360610.

    Full description at Econpapers || Download paper

  61. The Mechanism of Social Organization Participation in Natural Hazards Emergency Relief: A Case Study Based on the Social Network Analysis. (2019). Chen, Yingxin ; Tadikamalla, Pandu R ; Zhou, Lei ; Zhang, Jing.
    In: IJERPH.
    RePEc:gam:jijerp:v:16:y:2019:i:21:p:4110-:d:280151.

    Full description at Econpapers || Download paper

  62. Separating the signal from the noise - financial machine learning for Twitter. (2018). Schnaubelt, Matthias ; Krauss, Christopher ; Fischer, Thomas G.
    In: FAU Discussion Papers in Economics.
    RePEc:zbw:iwqwdp:142018.

    Full description at Econpapers || Download paper

  63. Predicting Match Outcomes in Football by an Ordered Forest Estimator. (2018). Lechner, Michael ; Knaus, Michael ; Goller, Daniel ; Okasa, Gabriel.
    In: Economics Working Paper Series.
    RePEc:usg:econwp:2018:11.

    Full description at Econpapers || Download paper

  64. Optimal functional supervised classification with separation condition. (2018). GADAT, Sébastien ; Gerchinovitz, Sebastien ; Marteau, Clement.
    In: TSE Working Papers.
    RePEc:tse:wpaper:32574.

    Full description at Econpapers || Download paper

  65. Classifying Firms with Text Mining. (2018). Caterini, Giacomo.
    In: DEM Working Papers.
    RePEc:trn:utwprg:2018/09.

    Full description at Econpapers || Download paper

  66. Performance assessment of five MCP models proposed for the estimation of long-term wind turbine power outputs at a target site using three machine learning techniques. (2018). Diaz, Santiago ; Matias, Jose M ; Carta, Jose A.
    In: Applied Energy.
    RePEc:eee:appene:v:209:y:2018:i:c:p:455-477.

    Full description at Econpapers || Download paper

  67. Generalized Random Forests. (2018). Athey, Susan ; Wager, Stefan ; Tibshirani, Julie.
    In: Papers.
    RePEc:arx:papers:1610.01271.

    Full description at Econpapers || Download paper

  68. Model economic phenomena with CART and Random Forest algorithms. (2017). David, Benjamin.
    In: EconomiX Working Papers.
    RePEc:drm:wpaper:2017-46.

    Full description at Econpapers || Download paper

  69. Comments on: A random forest guided tour. (2016). Arlot, Sylvain ; Genuer, Robin.
    In: TEST: An Official Journal of the Spanish Society of Statistics and Operations Research.
    RePEc:spr:testjl:v:25:y:2016:i:2:d:10.1007_s11749-016-0484-4.

    Full description at Econpapers || Download paper

  70. Too much cocited documents. This list is not complete

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 01:14:21 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.