create a website

Assessing the environmental impacts of flooding in Brazil using the flood area segmentation network deep learning model. (2025). Ergen, Burhan ; Ener, Abdullah.
In: Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards.
RePEc:spr:nathaz:v:121:y:2025:i:3:d:10.1007_s11069-024-06914-5.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 28

References cited by this document

Cocites: 11

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Al-Ruzouq R, Shanableh A, Jena R, Gibril MBA, Hammouri NA, Lamghari F (2024) Flood susceptibility mapping using a novel integration of multi-temporal sentinel-1 data and eXtreme deep learning model. Geosci Front 15(3):101780. https://doi.org/10.1016/j.gsf.2024.101780 .
    Paper not yet in RePEc: Add citation now
  2. Alimonti G, Mariani L (2024) Is the number of global natural disasters increasing? Environ Hazards 23(2):186–202. https://doi.org/10.1080/17477891.2023.2239807 .
    Paper not yet in RePEc: Add citation now
  3. CNN World (2024) https://edition.cnn.com/2024/05/09/world/brazil-floods-death-toll-intl-latam/index.html . Accessed 09 May 2024.
    Paper not yet in RePEc: Add citation now
  4. Dataset (2023) https://www.kaggle.com/datasets/faizalkarim/flood-area-segmentation?select=Mask . Accessed 31 Jan 2023.
    Paper not yet in RePEc: Add citation now
  5. Dataset (2023) https://www.kaggle.com/datasets/franciscoescobar/satellite-images-of-water-bodies Date: 18.02.2023.
    Paper not yet in RePEc: Add citation now
  6. Dataset (2024) https://www.gettyimages.com/photos/maxar . Accessed 08 May 2024.
    Paper not yet in RePEc: Add citation now
  7. Efendi R, Saputra A, Danardono D, Tilova UDN (2024) Integration GIS and HEC-RAS to simulate flood damage from river overflow (Study: Bengawan solo river section in Kadokan village). In: AIP conference proceedings, vol 2926. AIP Publishing. https://doi.org/10.1063/5.0185058 .
    Paper not yet in RePEc: Add citation now
  8. He Y, Wang J, Zhang Y, Liao C (2024) An efficient urban flood mapping framework towards disaster response driven by weakly supervised semantic segmentation with decoupled training samples. ISPRS J Photogramm Remote Sens 207:338–358. https://doi.org/10.1016/j.isprsjprs.2023.12.009 .
    Paper not yet in RePEc: Add citation now
  9. Hussain A, Latif G, Alghazo J, Kim E (2024) Flood detection using deep learning methods from visual images. In: AIP conference proceedings, vol 3034. AIP Publishing. https://doi.org/10.1063/5.0194669 .
    Paper not yet in RePEc: Add citation now
  10. Jamali A, Roy SK, Beni LH, Pradhan B, Li J, Ghamisi P (2024) Residual wave vision U-Net for flood mapping using dual polarization Sentinel-1 SAR imagery. Int J Appl Earth Obs Geoinf 127:103662. https://doi.org/10.1016/j.jag.2024.103662 .
    Paper not yet in RePEc: Add citation now
  11. Katiyar V, Tamkuan N, Nagai M (2021) Near-real-time flood mapping using off-the-shelf models with SAR imagery and deep learning. Remote Sens 13(12):2334. https://doi.org/10.3390/rs13122334 .
    Paper not yet in RePEc: Add citation now
  12. Khalifeh Soltanian F, Abbasi M, Riyahi Bakhtyari HR (2019) Flood monitoring using ndwi and mndwi spectral indices: a case study of aghqala flood-2019, Golestan Province, Iran. Int Arch Photogramm Remote Sens Spat Inf Sci 42:605–607. https://doi.org/10.5194/isprs-archives-XLII-4-W18-605-2019 .
    Paper not yet in RePEc: Add citation now
  13. Leite ME, Dias FT, Almeida JWL, dos Santos-Neto NF (2024) Land use and environmental impacts: flood model in a medium-sized Brazilian city as a tool for urban sustainability. Environ Sci Policy 151:103613. https://doi.org/10.1016/j.envsci.2023.103613 .
    Paper not yet in RePEc: Add citation now
  14. Ludwig P, Ehmele F, Franca MJ, Mohr S, Caldas-Alvarez A, Daniell JE, Ehret U, Feldmann H, Hundhausen M, Knippertz P, Küpfer K, Wisotzky C (2022) A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe. Part 2: historical context and relation to climate change. Nat Hazards Earth Syst Sci Discuss 2022:1–42. https://doi.org/10.5194/nhess-23-1287-2023 .
    Paper not yet in RePEc: Add citation now
  15. Munawar HS, Ullah F, Qayyum S, Khan SI, Mojtahedi M (2021) UAVs in disaster management: application of integrated aerial imagery and convolutional neural network for flood detection. Sustainability 13(14):7547. https://doi.org/10.3390/su13147547 .

  16. Nanditha JS, Kushwaha AP, Singh R, Malik I, Solanki H, Chuphal DS, Mishra V (2023) The Pakistan flood of August 2022: causes and implications. Earths Future 11(3):e2022EF003230. https://doi.org/10.1029/2022EF003230 .
    Paper not yet in RePEc: Add citation now
  17. Pech-May F, Aquino-Santos R, Álvarez-Cárdenas O, Arandia JL, Rios-Toledo G (2024) Segmentation and visualization of flooded areas through Sentinel-1 images and U-Net. IEEE J Sel Top Appl Earth Obs Remote Sens. https://doi.org/10.1109/JSTARS.2024.3387452 .
    Paper not yet in RePEc: Add citation now
  18. Şener A, Doğan G, Ergen B (2024) A novel convolutional neural network model with hybrid attentional atrous convolution module for detecting the areas affected by the flood. Earth Sci Inf 17(1):193–209. https://doi.org/10.1007/s12145-023-01155-9 .
    Paper not yet in RePEc: Add citation now
  19. Shahi KR, Camero A, Eudaric J, Kreibich H (2024) DC4Flood: a deep clustering framework for rapid flood detection using Sentinel-1 SAR imagery. IEEE Geosci Remote Sens Lett. https://doi.org/10.1109/LGRS.2024.3390745 .
    Paper not yet in RePEc: Add citation now
  20. Shin J, Rhee DS (2024) Estimating flood inundation in urban areas using a scenario generation method and inundation graphs. Appl Sci 14(3):1310. https://doi.org/10.3390/app14031310 .
    Paper not yet in RePEc: Add citation now
  21. The Center for Disaster Philanthropy (2024) https://disasterphilanthropy.org/disasters/2024-rio-grande-do-sul-brazil-floods/ . Acessed 08 May 2024.
    Paper not yet in RePEc: Add citation now
  22. Wang Y, Shen Y, Salahshour B, Cetin M, Iftekharuddin K, Tahvildari N, Huang G, Harris DK, Ampofo K, Goodall JL (2024) Urban flood extent segmentation and evaluation from real-world surveillance camera images using deep convolutional neural network. Environ Model Softw 173:105939. https://doi.org/10.1016/j.envsoft.2023.105939 .
    Paper not yet in RePEc: Add citation now
  23. Wu H, Song H, Huang J, Zhong H, Zhan R, Teng X, Qiu Z, He M, Cao J (2022) Flood detection in dual-polarization SAR images based on multi-scale deeplab model. Remote Sens 14(20):5181. https://doi.org/10.3390/rs14205181 .
    Paper not yet in RePEc: Add citation now
  24. Wu X, Zhang Z, Xiong S, Zhang W, Tang J, Li Z, An B, Li R (2023) A near-real-time flood detection method based on deep learning and SAR images. Remote Sens 15(8):2046. https://doi.org/10.3390/rs15082046 .
    Paper not yet in RePEc: Add citation now
  25. Xia J, Chen J (2021) A new era of flood control strategies from the perspective of managing the 2020 Yangtze River flood. Sci China Earth Sci 64(1):1–9. https://doi.org/10.1007/s11430-020-9699-8 .
    Paper not yet in RePEc: Add citation now
  26. Zhong P, Liu Y, Zheng H, Zhao J (2024) Detection of urban flood inundation from traffic images using deep learning methods. Water Resour Manag 38(1):287–301. https://doi.org/10.1007/s11269-023-03669-9 .

  27. Zhou Q, Teng S, Situ Z, Liao X, Feng J, Chen G, Zhang J, Lu Z (2023) A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions. Hydrol Earth Syst Sci 27(9):1791–1808. https://doi.org/10.5194/hess-27-1791-2023 .
    Paper not yet in RePEc: Add citation now
  28. Zhou Y, Wu Z, Jiang M, Xu H, Yan D, Wang H, He C, Zhang X (2024) Real-time prediction and ponding process early warning method at urban flood points based on different deep learning methods. J Flood Risk Manag 17(1):e12964. https://doi.org/10.1111/jfr3.12964 .
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Estimating Water Levels through Smartphone-Imaged Gauges: A Comparative Analysis of ANN, DL, and CNN Models. (2025). Guimaraes, Celso Augusto ; Ghorbani, Mohammad Ali ; Abdi, Erfan ; Patel, Utkarsh ; Sadeddin, Siria.
    In: Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA).
    RePEc:spr:waterr:v:39:y:2025:i:4:d:10.1007_s11269-024-04038-w.

    Full description at Econpapers || Download paper

  2. Assessing the environmental impacts of flooding in Brazil using the flood area segmentation network deep learning model. (2025). Ergen, Burhan ; Ener, Abdullah.
    In: Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards.
    RePEc:spr:nathaz:v:121:y:2025:i:3:d:10.1007_s11069-024-06914-5.

    Full description at Econpapers || Download paper

  3. A Systematic Literature Review on Classification Machine Learning for Urban Flood Hazard Mapping. (2024). Chourak, Mimoun ; Boushaba, Farid ; Hosni, Mohamed ; el Baida, Maelaynayn.
    In: Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA).
    RePEc:spr:waterr:v:38:y:2024:i:15:d:10.1007_s11269-024-03940-7.

    Full description at Econpapers || Download paper

  4. Vehicle Detection and Classification via YOLOv8 and Deep Belief Network over Aerial Image Sequences. (2023). al Mudawi, Naif ; Alonazi, Mohammed ; Abdelhaq, Maha ; Qureshi, Asifa Mehmood ; Algarni, Asaad ; Alazeb, Abdulwahab ; Alshahrani, Abdullah.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:19:p:14597-:d:1255680.

    Full description at Econpapers || Download paper

  5. The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management. (2023). Kumar, Vijendra ; Sharma, Kul Vaibhav ; Maharaj, Kiran Tota ; Mehta, Darshan J.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:13:p:10543-:d:1186764.

    Full description at Econpapers || Download paper

  6. Method for the Automated Inspection of the Surfaces of Photovoltaic Modules. (2022). Panchenko, Vladimir ; Bolshev, Vadim ; Kuznetsov, Pavel ; Jasiski, Marek ; Yuferev, Leonid ; Kotelnikov, Dmitry ; Flah, Aymen.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:19:p:11930-:d:921420.

    Full description at Econpapers || Download paper

  7. Promoting Customer Loyalty and Satisfaction in Financial Institutions through Technology Integration: The Roles of Service Quality, Awareness, and Perceptions. (2021). Qayyum, Siddra ; Iqbal, Kamran ; Inam, Hina ; Munawar, Hafiz Suliman.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:23:p:12951-:d:685694.

    Full description at Econpapers || Download paper

  8. Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management. (2021). Nazir, Umber ; Chan, Shiau Wei ; Abid, Sheikh Kamran ; Sulaiman, Noralfishah ; Ariza-Montes, Antonio ; Vega-Muoz, Alejandro.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:22:p:12560-:d:678675.

    Full description at Econpapers || Download paper

  9. Effects of COVID-19 on the Australian Economy: Insights into the Mobility and Unemployment Rates in Education and Tourism Sectors. (2021). Khan, Sara Imran ; Parvez, M A ; Munawar, Hafiz Suliman ; Ullah, Fahim ; Kouzani, Abbas Z.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:20:p:11300-:d:655207.

    Full description at Econpapers || Download paper

  10. Towards Smart Healthcare: UAV-Based Optimized Path Planning for Delivering COVID-19 Self-Testing Kits Using Cutting Edge Technologies. (2021). Qayyum, Siddra ; Parvez, M A ; Inam, Hina ; Munawar, Hafiz Suliman ; Ullah, Fahim ; Kouzani, Abbas Z.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:18:p:10426-:d:638633.

    Full description at Econpapers || Download paper

  11. UAV Based Spatiotemporal Analysis of the 2019–2020 New South Wales Bushfires. (2021). Qadir, Zakria ; Qayyum, Siddra ; Khan, Sara Imran ; Munawar, Hafiz Suliman ; Ullah, Fahim.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:18:p:10207-:d:634302.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-30 16:28:05 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.