Agresti, A., Caffo, B., Ohman-Strickland, P.: Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies. Comput. Stat. Data Anal. 47, 639–653 (2004).
Aitkin, M.: A general maximum likelihood analysis of variance components in generalized linear models. Biometrics 55, 117–128 (1999).
Alonso, A., Litire, S., Laenen, A.: A note on the indeterminacy of the random-effects distribution in hierarchical models. Am. Stat. 64, 318–324 (2010).
Antic, J., Laffont, C.M., Chafaï, D., Concordet, D.: Comparison of nonparametric methods in nonlinear mixed effects models. Comput. Stat. Data Anal. 53, 642–656 (2009).
Arpino, B., Varriale, R.: Assessing the quality of institutions’ rankings obtained through multilevel linear regression models. J. Appl. Econ. Sci. 5, 7–22 (2010).
Azzimonti, L., Ieva, F., Paganoni, A.M.: Nonlinear nonparametric mixed-effects models for unsupervised classification. Comput. Stat. 28, 1549–1570 (2013).
Bartolucci, F., Pennoni, F., Vittadini, G.: Assessment of school performance through a multilevel latent Markov Rasch model. J. Educ. Behav. Stat. 36, 491–522 (2011).
Besag, J., York, J., Mollié, A.: Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1–59 (1991).
Browne, W., Goldstein, H.: MCMC sampling for a multilevel model with nonindependent residuals within and between cluster units. J. Educ. Behav. Stat. 35, 453–473 (2010).
Comte, F., Samson, A.: Nonparametric estimation of random-effects densities in linear mixed-effects model. J. Nonparametr. Stat. 24, 951–975 (2012).
- Demidenko, E.: Mixed Models: Theory and Applications with R, 2nd edn. Wiley, New York (2013).
Paper not yet in RePEc: Add citation now
Ebbes, P., Bockenholt, U., Wedel, M.: Regressor and random-effects dependencies in multilevel models. Statistica Neerlandica 58, 161–178 (2004).
Eberly, L.E., Thackeray, L.M.: On Lange and Ryan’s plotting technique for diagnosing non-normality of random effects. Stat. Probab. Lett. 75, 77–85 (2005).
- Fong, Y., Rue, H., Wakefield, J.: Bayesian inference for generalized linear mixed models. Biostatistics 11, 397–412 (2010).
Paper not yet in RePEc: Add citation now
- Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/hierarchical Models. Cambridge University Press, Cambridge (2007).
Paper not yet in RePEc: Add citation now
- Gelman, A.: Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1, 515–533 (2006).
Paper not yet in RePEc: Add citation now
Ghidey, W., Lesaffre, E., Eilers, P.: Smooth random effects distribution in a linear mixed model. Biometrics 60, 945–953 (2004).
- Ghidey, W., Lesaffre, E., Verbeke, G.: A comparison of methods for estimating the random effects distribution of a linear mixed model. Stat. Methods Med. Res. 19, 575–600 (2010).
Paper not yet in RePEc: Add citation now
- Goldstein, H.: Multilevel Statistical Models. Wiley, New York (2011).
Paper not yet in RePEc: Add citation now
- Grilli, L., Metelli, S., Rampichini, C.: Bayesian estimation with integrated nested Laplace approximation for binary logit mixed models. J. Stat. Comput. Simul. (2014). doi: 10.1080/00949655.2014.935377 .
Paper not yet in RePEc: Add citation now
- Grilli, L., Rampichini, C.: Multilevel models for the evaluation of educational institutions: a review. In: Monari, P., Bini, M., Piccolo, D., Salmaso, L. (eds.) Statistical Methods for the Evaluation of Educational Services and Quality of Products, pp. 61–80. Physica-Verlag, Heidelberg (2009).
Paper not yet in RePEc: Add citation now
- Grilli, L., Rampichini, C.: The role of sample cluster means in multilevel models: a view on endogeneity and measurement error issues. Methodology 7, 121–133 (2011).
Paper not yet in RePEc: Add citation now
Guglielmi, A., Ieva, F., Paganoni, A.M., Ruggeri, F., Soriano, J.: Semiparametric Bayesian models for clustering and classification in presence of unbalanced in-hospital survival. J. R. Stat. Soc. C 63(1), 25–46 (2014).
Hall, P., Yao, Q.: Inference in components of variance models with low replication. Ann. Stat. 31, 414–441 (2003).
- Heagerty, P.J., Kurland, B.F.: Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika 88, 973–985 (2001).
Paper not yet in RePEc: Add citation now
Hedeker, D., Mermelstein, R.J., Demirtas, H.: An application of a mixed-effects location scale model for analysis of ecological momentary assessment (EMA) data. Biometrics 64, 627–634 (2008).
- Hedeker, D., Mermelstein, R.J., Demirtas, H.: Modeling between-subject and within-subject variances in ecological momentary assessment data using mixed-effects location scale models. Stat. Med. 31, 3328–3336 (2012).
Paper not yet in RePEc: Add citation now
- Heinzl, F., Tutz, G.: Clustering in linear mixed models with approximate Dirichlet process mixtures using EM algorithm. Stat. Model. 13, 41–67 (2013).
Paper not yet in RePEc: Add citation now
Huang, X.: Detecting random-effects model misspecification via coarsened data. Comput. Stat. Data Anal. 55, 703–714 (2011).
Huang, X.: Diagnosis of random-effect model misspecification in generalized linear mixed models for binary response. Biometrics 65, 361–368 (2009).
Jacqmin-Gadda, H., Sibillot, S., Proust, C., Molina, J.-M., Thiébaut, R.: Robustness of the linear mixed model to misspecified error distribution. Comput. Stat. Data Anal. 51, 5142–5154 (2007).
Kim, J.S., Frees, E.W.: Multilevel modeling with correlated effects. Psychometrika 72, 505–533 (2007).
- Kleinman, K., Ibrahim, J.: A semi-parametric Bayesian approach to generalized linear mixed models. Stat. Med. 17, 2579–2596 (1998).
Paper not yet in RePEc: Add citation now
Komárek, A., Lesaffre, E.: Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution. Comput. Stat. Data Anal. 52, 3441–3458 (2008).
- Langford, I.H., Lewis, T.: Outliers in multilevel data. J. R. Stat. Soc. A 161, 121–160 (1998).
Paper not yet in RePEc: Add citation now
Leckie, G., Goldstein, H.: The limitations of using school league tables to inform school choice. J. R. Stat. Soc. A 172, 835–851 (2009).
Leckie, G., Goldstein, H.: Understanding uncertainty in school league tables. Fiscal Stud. 32, 207–224 (2011).
- Leckie, G.B., Pillinger, R.J., Jones, K., Goldstein, H.: Multilevel modelling of social segregation. J. Educ. Behav. Stat. 37, 3–30 (2012).
Paper not yet in RePEc: Add citation now
Lesperance, M., Saab, R., Neuhaus, J.: Nonparametric estimation of the mixing distribution in logistic regression mixed models with random intercepts and slopes. Comput. Stat. Data Anal. 71, 211–219 (2014).
Litière, S., Alonso, A., Molenberghs, G.: Rejoinder to “A note on Type I and Type II error under random-effects misspecification in generalized linear mixed modelsâ€. Biometrics 67, 656–660 (2011).
- Litière, S., Alonso, A., Molenberghs, G.: The impact of a misspecified random-effects distribution on the estimation and the performance of inferential procedures in generalized linear mixed models. Stat. Med. 27, 3125–3144 (2008).
Paper not yet in RePEc: Add citation now
- Liu, J., Dey, D.K.: Skew random effects in multilevel binomial models: an alternative to nonparametric approach. Stat. Model. 8, 221–241 (2008).
Paper not yet in RePEc: Add citation now
- Loy, A., Hofmann, H.: Diagnostic tools for hierarchical linear models. WIREs Comput. Stat. 5, 48–61 (2013).
Paper not yet in RePEc: Add citation now
- Lukociene, O., Varriale, R., Vermunt, J.K.: The simultaneous decision(s) about the number of lower- and higher-level classes in multilevel latent class analysis. Sociol. Methodol. 40, 247–283 (2010).
Paper not yet in RePEc: Add citation now
- Lunn, D., Jackson, C., Best, N., Thomas, A., Spiegelhalter, D.: The BUGS Book—A Practical Introduction to Bayesian Analysis published. CRC Press/Chapman and Hall, Boca Raton (2012).
Paper not yet in RePEc: Add citation now
Maas, C.J.M., Hox, J.J.: Robustness issues in multilevel regression analysis. Statistica Neerlandica 58, 127–137 (2004).
- McCulloch, C.E., Neuhaus, J.M.: Misspecifying the shape of a random effects distribution: why getting it wrong may not matter. Stat. Sci. 26, 388–402 (2011a).
Paper not yet in RePEc: Add citation now
- McCulloch, C.E., Neuhaus, J.M.: Prediction of random effects in linear and generalized linear models under model misspecification. Biometrics 67, 270–279 (2011b).
Paper not yet in RePEc: Add citation now
- Muthén, B.: Latent variable analysis: growth mixture modeling and related techniques for longitudinal data. In: Kaplan, D. (ed.) Handbook of Quantitative Methodology for the Social Sciences, pp. 345–368. Sage, New York (2004).
Paper not yet in RePEc: Add citation now
- Ohlssen, D.I., Sharples, L.D., Spiegelhalter, D.J.: Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons. Stat. Med. 26, 2088–2112 (2007).
Paper not yet in RePEc: Add citation now
- Palardy, G., Vermunt, J.K.: Multilevel growth mixture models for classifying groups. J. Educ. Behav. Stat. 35, 532–565 (2010).
Paper not yet in RePEc: Add citation now
- Papageorgiou, G., Hinde, J.: Multivariate generalized linear mixed models with semi-nonparametric and smooth nonparametric random effects densities. Stat. Comput. 22, 79–92 (2012).
Paper not yet in RePEc: Add citation now
- Pinheiro, J.C., Liu, C., Wu, Y.N.: Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution. J. Comput. Graph. Stat. 10, 249–276 (2001).
Paper not yet in RePEc: Add citation now
- Rabe-Hesketh, S., Pickles, A., Skrondal, A.: Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation. Stat. Model. 3, 215–232 (2003).
Paper not yet in RePEc: Add citation now
- Rao, J.N.K.: Small Area Estimation. Wiley, LinkHoboken (2003).
Paper not yet in RePEc: Add citation now
- Raudenbush, S.W., Bryk, A.S.: Hierarchical Linear Models: Applications and Data Analysis Methods. Sage, Thousand Oaks, CA (2002).
Paper not yet in RePEc: Add citation now
- Sani, C., Grilli, L.: Differential variability of test scores among schools: a multilevel analysis of the fifth-grade Invalsi test using heteroscedastic random effects. J. Appl. Quant. Methods 6, 88–99 (2011).
Paper not yet in RePEc: Add citation now
- Scott, M.A., Simonoff, J.S., Marx, B.D. (eds.): The Sage Handbook of Multilevel Modeling. Sage, London (2013).
Paper not yet in RePEc: Add citation now
- Shen, W., Louis, T.A.: Empirical Bayes estimation via the smoothing by roughening approach. J. Comput. Graph. Stat. 8, 800–823 (1999).
Paper not yet in RePEc: Add citation now
- Snijders, T.A.B., Berkhof, J.: Diagnostic checks for multilevel models. In: de Leeuw, J., Meijer, E. (eds.) Handbook of Multilevel Analysis, pp. 141–175. Springer, Berlin (2008).
Paper not yet in RePEc: Add citation now
- Snijders, T.A.B., Bosker, R.J.: Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modelling, 2nd edn. MPG Books Group, Bodmin (2012).
Paper not yet in RePEc: Add citation now
- Verbeke, G., Lesaffre, E.: A linear mixed-effects model with heterogeneity in the random-effects population. J. Am. Stat. Assoc. 91, 217–221 (1996).
Paper not yet in RePEc: Add citation now
Verbeke, G., Lesaffre, E.: The effects of misspecifying the random-effects distribution in linear mixed models for longitudinal data. Comput. Stat. Data Anal. 23, 541–556 (1997).
- Verbeke, G., Molenberghs, G.: The gradient function as an exploratory goodness-of-fit assessment of the random-effects distribution in mixed models. Biostatistics 14, 477–490 (2013).
Paper not yet in RePEc: Add citation now
- Vermunt, J.K.: Multilevel latent class models. Sociol. Methodol. 33, 213–239 (2003).
Paper not yet in RePEc: Add citation now
White, N., Johnson, H., Silburn, P.A.: Dirichlet process mixture models for unsupervised clustering of symptoms in Parkinson’s disease. J. Appl. Stat. 39, 2363–2377 (2012).
Zhang, D., Davidian, M.: Linear mixed models with flexible distributions of random effects for longitudinal data. Biometrics 57, 795–802 (2001).