Akbas F, Jiang C, Koch PD (2020) Insider investment horizon. J Finance 75:1579–1627. https://doi.org/10.1111/jofi.12878 .
Amendola A, Braione M, Candila V, Storti G (2020) A model confidence set approach to the combination of multivariate volatility forecasts. Int J Forecast 36:873–891. https://doi.org/10.1016/j.ijforecast.2019.10.001 .
Baker SR, Bloom N, Davis SJ (2016) Measuring economic policy uncertainty*. Q J Econ 131:1593–1636. https://doi.org/10.1093/qje/qjw024 .
Batten JA, Maddox GE, Young MR (2021) Does weather, or energy prices, affect carbon prices? Energy Econ 96:105016. https://doi.org/10.1016/j.eneco.2020.105016 .
Baur DG, Smales LA (2020) Hedging geopolitical risk with precious metals. J Bank Finance 117:105823. https://doi.org/10.1016/j.jbankfin.2020.105823 .
Bloom N (2009) The impact of uncertainty shocks. Econometrica 77:623–685. https://doi.org/10.3982/ECTA6248 .
- Bolton P, Kacperczyk M (2021) Do investors care about carbon risk? J Financ Econ 142:517–549. https://doi.org/10.1016/j.jfineco.2021.05.008 .
Paper not yet in RePEc: Add citation now
Brandt MW, Gao L (2019) Macro fundamentals or geopolitical events? A textual analysis of news events for crude oil. J Empir Finance 51:64–94. https://doi.org/10.1016/j.jempfin.2019.01.007 .
Byun SJ, Cho H (2013) Forecasting carbon futures volatility using GARCH models with energy volatilities. Energy Econ 40:207–221. https://doi.org/10.1016/j.eneco.2013.06.017 .
- Caldara D, Iacoviello M (2018) Measuring geopolitical risk. Int. Finance Discuss. Pap. https://doi.org/10.17016/IFDP.2018.1222 .
Paper not yet in RePEc: Add citation now
- Caldara D, Iacoviello M (2022) Measuring geopolitical risk. Am Econ Rev 112:1194–1225. https://doi.org/10.1257/aer.20191823 .
Paper not yet in RePEc: Add citation now
- Carney M (2016) Uncertainty, the economy and policy. Bank Engl. 16.
Paper not yet in RePEc: Add citation now
Conrad C, Kleen O (2020) Two are better than one: Volatility forecasting using multiplicative component GARCH-MIDAS models. J Appl Econom 35:19–45. https://doi.org/10.1002/jae.2742 .
- Dai X, Xiao L, Wang Q, Dhesi G (2021) Multiscale interplay of higher-order moments between the carbon and energy markets during phase III of the EU ETS. Energy Policy 156:112428. https://doi.org/10.1016/j.enpol.2021.112428 .
Paper not yet in RePEc: Add citation now
- Engle RF, Ghysels E, Sohn B (2013) Stock market volatility and macroeconomic fundamentals. Rev Econ Stat 95:776–797. https://doi.org/10.1162/REST_a_00300 .
Paper not yet in RePEc: Add citation now
Engle RF, Rangel JG (2008) The spline-GARCH model for low-frequency volatility and its global macroeconomic causes. Rev Financ Stud 21:1187–1222. https://doi.org/10.1093/rfs/hhn004 .
Fang T, Lee T-H, Su Z (2020) Predicting the long-term stock market volatility: a GARCH-MIDAS model with variable selection. J Empir Finance 58:36–49. https://doi.org/10.1016/j.jempfin.2020.05.007 .
Fezzi C, Mosetti L (2020) Size matters: estimation sample length and electricity price forecasting accuracy. Energy J. https://doi.org/10.5547/01956574.41.4.cfez .
Ghysels E, Plazzi A, Valkanov R, Rubia A, Dossani A (2019) Direct versus iterated multiperiod volatility forecasts. Annu Rev Financ Econ 11:173–195. https://doi.org/10.1146/annurev-financial-110217-022808 .
Ghysels E, Santa-Clara P, Valkanov R (2004) The MIDAS touch: mixed data sampling regression models.
Ghysels E, Santa-Clara P, Valkanov R (2006) Predicting volatility: getting the most out of return data sampled at different frequencies. J Econom 131:59–95. https://doi.org/10.1016/j.jeconom.2005.01.004 .
Gong X, Xu J (2022) Geopolitical risk and dynamic connectedness between commodity markets. Energy Econ 110:106028. https://doi.org/10.1016/j.eneco.2022.106028 .
Guo X, Huang Y, Liang C, Umar M (2022) Forecasting volatility of EUA futures: new evidence. Energy Econ. https://doi.org/10.1016/j.eneco.2022.106021 .
- Hansen PR, Lunde A, Nason JM (2011) The model confidence set. Econometrica 79:453–497. https://doi.org/10.3982/ECTA5771 .
Paper not yet in RePEc: Add citation now
Hintermann B, Peterson S, Rickels W (2016) Price and market Behavior in Phase II of the EU ETS: a review of the literature. Rev Environ Econ Policy 10:108–128. https://doi.org/10.1093/reep/rev015 .
Huang W, Wang H, Qin H, Wei Y, Chevallier J (2022) Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method. Energy Econ 110:106049. https://doi.org/10.1016/j.eneco.2022.106049 .
- Huang Y, Dai X, Wang Q, Zhou D (2021) A hybrid model for carbon price forecasting using GARCH and long short-term memory network. Appl Energy 285:116485. https://doi.org/10.1016/j.apenergy.2021.116485 .
Paper not yet in RePEc: Add citation now
Inoue A, Jin L, Rossi B (2017) Rolling window selection for out-of-sample forecasting with time-varying parameters. J Econom 196:55–67. https://doi.org/10.1016/j.jeconom.2016.03.006 .
Jurado K, Ludvigson SC, Ng S (2015) Measuring uncertainty. Am Econ Rev 105:1177–1216. https://doi.org/10.1257/aer.20131193 .
- Kumar S, Khalfaoui R, Tiwari AK (2021) Does geopolitical risk improve the directional predictability from oil to stock returns? Evidence from oil-exporting and oil-importing countries. Resour Policy 74:102253. https://doi.org/10.1016/j.resourpol.2021.102253 .
Paper not yet in RePEc: Add citation now
Ledoit O, Wolf M (2008) Robust performance hypothesis testing with the Sharpe ratio. J Empir Finance 15:850–859. https://doi.org/10.1016/j.jempfin.2008.03.002 .
Liu J, Ma F, Tang Y, Zhang Y (2019) Geopolitical risk and oil volatility: a new insight. Energy Econ 84:104548. https://doi.org/10.1016/j.eneco.2019.104548 .
Liu J, Zhang Z, Yan L, Wen F (2021) Forecasting the volatility of EUA futures with economic policy uncertainty using the GARCH-MIDAS model. Financ Innov 7:76. https://doi.org/10.1186/s40854-021-00292-8 .
Liu X, An H, Wang L, Jia X (2017) An integrated approach to optimize moving average rules in the EUA futures market based on particle swarm optimization and genetic algorithms. Appl Energy 185:1778–1787. https://doi.org/10.1016/j.apenergy.2016.01.045 .
Longin FM (1999) Optimal margin level in futures markets: Extreme price movements. J Futur Mark 19:127–152. https://doi.org/10.1002/(SICI)1096-9934(199904)19:2%3c127::AID-FUT1%3e3.0.CO;2-M .
- Lu H, Gao Q, Li MC (2022) Does economic policy uncertainty outperform macroeconomic factor and financial market uncertainty in forecasting carbon emission price volatility? Appl. Econ, Evidence from China. https://doi.org/10.1080/00036846.2022.2156470 .
Paper not yet in RePEc: Add citation now
Salisu AA, Pierdzioch C, Gupta R (2021) Geopolitical risk and forecastability of tail risk in the oil market: evidence from over a century of monthly data. Energy 235:121333. https://doi.org/10.1016/j.energy.2021.121333 .
Samuels JD, Sekkel RM (2017) Model confidence sets and forecast combination. Int J Forecast 33:48–60. https://doi.org/10.1016/j.ijforecast.2016.07.004 .
Segnon M, Lux T, Gupta R (2017) Modeling and forecasting the volatility of carbon dioxide emission allowance prices: a review and comparison of modern volatility models. Renew Sustain Energy Rev 69:692–704. https://doi.org/10.1016/j.rser.2016.11.060 .
Su C-W, Khan K, Tao R, Nicoleta-Claudia M (2019) Does geopolitical risk strengthen or depress oil prices and financial liquidity? Evidence Saudi Arabia Energy 187:116003. https://doi.org/10.1016/j.energy.2019.116003 .
Tan X-P, Wang X-Y (2017) Dependence changes between the carbon price and its fundamentals: a quantile regression approach. Appl Energy 190:306–325. https://doi.org/10.1016/j.apenergy.2016.12.116 .
Taylor N (2014) The economic value of volatility forecasts: a conditional approach. J Financ Econom 12:433–478. https://doi.org/10.1093/jjfinec/nbt021 .
van Binsbergen JH, Diamond WF, Grotteria M (2022) Risk-free interest rates. J Financ Econ 143:1–29. https://doi.org/10.1016/j.jfineco.2021.06.012 .
- Van den Bremer TS, Van der Ploeg F (2021) The risk-adjusted carbon price. Am Econ Rev 111:2782–2810. https://doi.org/10.1257/aer.20180517 .
Paper not yet in RePEc: Add citation now
Wang K-H, Su C-W, Umar M (2021) Geopolitical risk and crude oil security: a Chinese perspective. Energy 219:119555. https://doi.org/10.1016/j.energy.2020.119555 .
Zhang Y, Ma F, Shi B, Huang D (2018) Forecasting the prices of crude oil: an iterated combination approach. Energy Econ 70:472–483. https://doi.org/10.1016/j.eneco.2018.01.027 .