- Abuhay, T. M., Nigatie, Y. G., & Kovalchuk, S. V. (2018). Towards predicting trend of scientific research topics using topic modeling. Procedia Computer Science, 136, 304–310.
Paper not yet in RePEc: Add citation now
- Balili, C., Segev, A., & Lee, U. (2017). Tracking and predicting the evolution of research topics in scientific literature. In 2017 IEEE international conference on big data (big data) (pp. 1694–1697), 2017.
Paper not yet in RePEc: Add citation now
- Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77–84.
Paper not yet in RePEc: Add citation now
- Bolelli, L., Ertekin, Ş, & Giles, C. L. (2009). Topic and trend detection in text collections using latent Dirichlet allocation. Advances in Information Retrieval (pp. 776–780). Berlin: Springer.
Paper not yet in RePEc: Add citation now
Bornmann, L., Haunschild, R., & Mutz, R. (2021). Growth rates of modern science: A latent piecewise growth curve approach to model publication numbers from established and new literature databases. Humanities and Social Sciences Communications, 8(1), 224.
- Campani, M., & Vaglio, R. (2014). A simple interpretation of the growth of scientific/technological research impact leading to hype-type evolution curves. CoRR, vol. abs/1410.8685.
Paper not yet in RePEc: Add citation now
Chen, B., Tsutsui, S., Ding, Y., & Ma, F. (2017). Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval. Journal of Informetrics, 11(4), 1175–1189.
Dong, K., Xu, H., Luo, R., Wei, L., & Fang, S. (2018). An integrated method for interdisciplinary topic identification and prediction: a case study on information science and library science. Scientometrics, 115(2), 849–868.
Dotsika, F., & Watkins, A. (2017). Identifying potentially disruptive trends by means of keyword network analysis. Technological Forecasting and Social Change, 119, 114–127.
- Dwivedi, Y. K., Sharma, A., Rana, N. P., Giannakis, M., Goel, P., & Dutot, V. (2023). Evolution of artificial intelligence research in technological forecasting and social change: Research topics, trends, and future directions. Technological Forecasting and Social Change, 192, 122579.
Paper not yet in RePEc: Add citation now
- Foster, J. G., Rzhetsky, A., & Evans, J. A. (2015). Tradition and innovation in scientists’ research strategies. American Sociological Review, 80(5), 875–908.
Paper not yet in RePEc: Add citation now
- Garfield, E. (1955). Citation indexes for science. Science, 122(3159), 108–111.
Paper not yet in RePEc: Add citation now
- Garner, J., Carley, S., Porter, A. L. & Newman, N. C. (2017). Technological emergence indicators using emergence scoring. In 2017 Portland international conference on management of engineering and technology (PICMET) (pp. 1–12), 2017.
Paper not yet in RePEc: Add citation now
- Grootendorst, M. (2020). KeyBERT: Minimal keyword extraction with BERT. https://github.com/MaartenGr/KeyBERT .
Paper not yet in RePEc: Add citation now
- Henry, S., & McInnes, B. T. (2017). Literature based discovery: Models, methods, and trends. Journal of Biomedical Informatics, 74, 20–32.
Paper not yet in RePEc: Add citation now
Huang, L., Chen, X., Zhang, Y., Wang, C., Cao, X., & Liu, J. (2022). Identification of topic evolution: network analytics with piecewise linear representation and word embedding. Scientometrics, 127(9), 5353–5383.
- Kanellos, I., Vergoulis, T., Sacharidis, D., Dalamagas, T., & Vassiliou, Y. (2021). Impact-based ranking of scientific publications: A survey and experimental evaluation. IEEE Transactions on Knowledge and Data Engineering, 33(4), 1567–1584.
Paper not yet in RePEc: Add citation now
Kumar, V., & Srivastava, A. (2022). Trends in the thematic landscape of corporate social responsibility research: A structural topic modeling approach. Journal of Business Research, 150, 26–37.
- Kyebambe, M. N., Cheng, G., Huang, Y., He, C., & Zhang, Z. (2017). Forecasting emerging technologies: A supervised learning approach through patent analysis. Technological Forecasting and Social Change, 125, 236–244.
Paper not yet in RePEc: Add citation now
Lin, Y., Evans, J. A., & Wu, L. (2022). New directions in science emerge from disconnection and discord. Journal of Informetrics, 16(1), 101234.
- Lu, W., Huang, S., Yang, J., Bu, Y., Cheng, Q., & Huang, Y. (2021). Detecting research topic trends by author-defined keyword frequency. Information Processing & Management, 58(4), 102594.
Paper not yet in RePEc: Add citation now
- Ma, J., Wang, L., Zhang, Y.-R., Yuan, W., & Guo, W. (2023). An integrated latent Dirichlet allocation and Word2vec method for generating the topic evolution of mental models from global to local. Expert Systems with Applications, 212, 118695.
Paper not yet in RePEc: Add citation now
- Ma, N., Guan, J., & Zhao, Y. (2008). Bringing PageRank to the citation analysis. Information Processing & Management, 44(2), 800–810.
Paper not yet in RePEc: Add citation now
Ma, T., Zhou, X., Liu, J., Lou, Z., Hua, Z., & Wang, R. (2021). Combining topic modeling and SAO semantic analysis to identify technological opportunities of emerging technologies. Technological Forecasting and Social Change, 173, 121159.
- Malarya, A., Ragunathan, K., Kamaraj, M. B., Vijayarajan, V. (2021). Emerging trends demand forecast using dynamic time warping. In 2021 IEEE 22nd international conference on information reuse and integration for data science (IRI) (pp. 402–407), 2021.
Paper not yet in RePEc: Add citation now
Milojević, S., Sugimoto, C. R., Yan, E., & Ding, Y. (2011). The cognitive structure of Library and Information Science: Analysis of article title words. Journal of the American Society for Information Science and Technology, 62(10), 1933–1953.
- Mizutani, E., & Dreyfus, S. (2021). On using dynamic programming for time warping in pattern recognition. Information Sciences, 580, 684–704.
Paper not yet in RePEc: Add citation now
Ranaei, S., Suominen, A., Porter, A., & Carley, S. (2020). Evaluating technological emergence using text analytics: two case technologies and three approaches. Scientometrics, 122(1), 215–247.
Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology? Research Policy, 44(10), 1827–1843.
- Sharma, P. L. (2019). Self-supervised contextual keyword and keyphrase retrieval with self-labelling. Preprints, 2019080073, 1.
Paper not yet in RePEc: Add citation now
- Shibata, N., Kajikawa, Y., Takeda, Y., Sakata, I., & Matsushima, K. (2011). Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications. Technological Forecasting and Social Change, 78(2), 274–282.
Paper not yet in RePEc: Add citation now
Shibayama, S., & Wang, J. (2020). Measuring originality in science. Scientometrics, 122(1), 409–427.
Taher Harikandeh, S. R., Aliakbary, S., & Taheri, S. (2023). An embedding approach for analyzing the evolution of research topics with a case study on computer science subdomains. Scientometrics, 128(3), 1567–1582.
- Tomojiri, D., Takaya, K., & Ise, T. (2022). Temporal trends and spatial distribution of research topics in anthropogenic marine debris study: Topic modelling using latent Dirichlet allocation. Marine Pollution Bulletin, 182, 113917.
Paper not yet in RePEc: Add citation now
- Tsinaslanidis, P. E., & Kugiumtzis, D. (2014). A prediction scheme using perceptually important points and dynamic time warping. Expert Systems with Applications, 41(15), 6848–6860.
Paper not yet in RePEc: Add citation now
- Tu, Y.-N., & Seng, J.-L. (2012). Indices of novelty for emerging topic detection. Information Processing & Management, 48(2), 303–325.
Paper not yet in RePEc: Add citation now
- Uzzi, B., Mukherjee, S., Stringer, M., & Jones, B. (2013). Atypical combinations and scientific impact. Science, 342(6157), 468–472.
Paper not yet in RePEc: Add citation now
Wang, J., Veugelers, R., & Stephan, P. (2017). Bias against novelty in science: A cautionary tale for users of bibliometric indicators. Research Policy, 46(8), 1416–1436.
- Wang, S., Xie, S., Zhang, X., Li, Z., Yu, P. S., & He, Y. (2016). Coranking the future influence of multiobjects in bibliographic network through mutual reinforcement. ACM Transactions on Intelligent Systems and Technology (TIST), 7, 1–28.
Paper not yet in RePEc: Add citation now
Wu, H., Yi, H., & Li, C. (2021). An integrated approach for detecting and quantifying the topic evolutions of patent technology: A case study on graphene field. Scientometrics, 126(8), 6301–6321.
Wu, L., Wang, D., & Evans, J. A. (2019). Large teams develop and small teams disrupt science and technology. Nature, 566(7744), 378–382.
Xu, H., Guo, T., Yue, Z., Ru, L., & Fang, S. (2016). Interdisciplinary topics of information science: a study based on the terms interdisciplinarity index series. Scientometrics, 106(2), 583–601.
Yan, E. (2014). Research dynamics: Measuring the continuity and popularity of research topics. Journal of Informetrics, 8(1), 98–110.
- Zhang, Y., Chen, H., Lu, J., & Zhang, G. (2017). Detecting and predicting the topic change of Knowledge-based Systems: A topic-based bibliometric analysis from 1991 to 2016. Knowledge-Based Systems, 133, 255–268.
Paper not yet in RePEc: Add citation now
- Zhou, H.-K., Yu, H.-M., & Hu, R. (2017). Topic discovery and evolution in scientific literature based on content and citations. Frontiers of Information Technology & Electronic Engineering, 18(10), 1511–1524.
Paper not yet in RePEc: Add citation now