- Aı̈t-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: A closedform approximation approach. Econometrica, 70:223–262.
Paper not yet in RePEc: Add citation now
- Aı̈t-Sahalia, Y. and Jacod, J. (2009). Testing for jumps in a discretely observed process. Annals of Statistics, 37:184–222.
Paper not yet in RePEc: Add citation now
Aı̈t-Sahalia, Y. and Mykland, P. A. (2003). The effects of random and discrete sampling when estimating continuous-time diffusions. Econometrica, 71:483–549.
- Aı̈t-Sahalia, Y. and Mykland, P. A. (2004). Estimators of diffusions with randomly spaced discrete observations: A general theory. Annals of Statistics, 32:2186–2222.
Paper not yet in RePEc: Add citation now
Aı̈t-Sahalia, Y. and Park, J. Y. (2016). Bandwidth selection and asymptotic properties of local nonparametric estimators in possibly nonstationary continuous-time models. Journal of Econometrics, 192:119–138.
- Andersen, T. G., Benzoni, L., and Lund, J. (2004). Stochastic volatility, mean drift, and jumps in the short-term interest rate. Preprint.
Paper not yet in RePEc: Add citation now
Andersen, T. G., Dobrev, D., and Schaumburg, E. (2012). Jump-robust volatility estimation using nearest neighbor truncation. Journal of Econometrics, 169:75–93.
Bandi, F. M. and Nguyen, T. H. (2003). On the functional estimation of jump-diffusion models. Journal of Econometrics, 116:293–328.
Bandi, F. M. and Phillips, P. C. B. (2003). Fully nonparametric estimation of scalar diffusion models. Econometrica, 71:241–283.
- Bandi, F. M. and Renò, R. (2018). Nonparametric stochastic volatility. Econometric Theory, 34:1207–1255.
Paper not yet in RePEc: Add citation now
- Barndorff-Nielsen, O. E. and Shephard, N. (2003). Realized power variation and stochastic volatility. Bernoulli, 9:243–265.
Paper not yet in RePEc: Add citation now
Barndorff-Nielsen, O. E. and Shephard, N. (2004). Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics, 2:1–37.
Barndorff-Nielsen, O. E. and Shephard, N. (2006). Econometrics of testing for jumps in financial economics using bipower variation. Journal of Financial Econometrics, 4:1–30.
- Barndorff-Nielsen, O. E., Graversen, S. E., Jacod, J., Podolskij, M., and Shephard, N. (2005). A central limit theorem for realised power and bipower variations of continuous semimartingales. In Kabanov, Y. and Lipster, R., editors, From Stochastic Calculus to Mathematical Finance, Festschrift for Albert Shiryaev, pages 33–68. Springer.
Paper not yet in RePEc: Add citation now
Barndorff-Nielsen, O. E., Shephard, N., and Winkel, M. (2006). Limit theorems for multipower variation in the presence of jumps. Stochastic Processes and their Applications, 5:796–806.
Bollerslev, T. and Todorov, V. (2011). Estimation of jump tails. Econometrica, 79:1727–1783.
- Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes. Springer, New York, NY.
Paper not yet in RePEc: Add citation now
Boudt, K., Croux, C., and Laurent, S. (2011). Outlyingness weighted covariation. Journal of Financial Econometrics, 9:657–684.
Chang, J. and Chen, S. X. (2011). On the approximate maximum likelihood estimation for diffusion processes. Annals of Statistics, 39:2820–2851.
- Chen, S. X., Gao, J., and Tang, C. Y. (2008). A test for model specification of diffusion processes. Annals of Statistics, 36:167–198.
Paper not yet in RePEc: Add citation now
Christensen, K., Oomen, R., and Podolskij, M. (2010). Realised quantile-based estimation of the integrated variance. Journal of Econometrics, 159:74–98.
Corsi, F., Pirino, D., and Renò, R. (2010). Threshold bipower variation and the impact of jumps on volatility forecasting. Journal of Econometrics, 159:276–288.
Fan, J. and Zhang, C. (2003). A reexamination of diffusion estimators with applications to financial model validation. Journal of the American Statistical Association, 98:118–134.
- Höpfner, R. and Löcherbach, E. (2003). Limit Theorems for Null Recurrent Markov Processes. American Mathematical Society, Providence, MA.
Paper not yet in RePEc: Add citation now
Jacod, J. (2008). Asymptotic properties of realized power variations and related functionals of semimartingales. Stochastic Processes and their Applications, 118:517–559.
- Jacod, J. (2012). Statistics and high frequency data. In Kessler, M., Lindner, A., and Sorensen, M., editors, Statistical Methods for Stochastic Differential Equations, pages 191–310. Chapman and Hall.
Paper not yet in RePEc: Add citation now
- Jacod, J. and Rosenbaum, M. (2013). Quarticity and other functionals of volatility: Efficient estimation. Annals of Statistics, 41:1462–1484.
Paper not yet in RePEc: Add citation now
- Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes. Springer, New York, NY.
Paper not yet in RePEc: Add citation now
- Jeong, M. and Park, J. Y. (2016). An asymptotic theory of jump diffusion model. Preprint.
Paper not yet in RePEc: Add citation now
Kanaya, S. (2016). Uniform convergence rates of kernel-based nonparametric estimators for continuous time diffusion processes: A damping function approach. Econometric Theory, 32:1–41.
Kanaya, S. and Kristensen, D. (2016). Estimation of stochastic volatility models by nonparametric filtering. Econometric Theory, 32:861–916.
Kim, J. and Park, J. Y. (2017a). Asymptotics for recurrent diffusions with application to high frequency regression. Journal of Econometrics, 196:27–54.
- Kim, J. and Park, J. Y. (2017b). Unit root, mean reversion and nonstationarity in financial time series. Working Paper, Indiana University.
Paper not yet in RePEc: Add citation now
- Kristensen, D. (2010). Nonparametric filtering of the realised spot volatility: A kernel-based approach. Econometric Theory, 26:60–93.
Paper not yet in RePEc: Add citation now
Mancini, C. (2009). Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps. Scandinavian Journal of Statistics, 36:270–296.
Mancini, C. and Renò, R. (2011). Threshold estimation of Markov models with jumps and interest rate modeling. Journal of Econometrics, 160:77–92.
- Park, J. Y. and Wang, B. (2018). Nonparametric estimation of jump diffusion models. Working Paper, Indiana University.
Paper not yet in RePEc: Add citation now
- Protter, P. E. (2005). Stochastic Integration and Differential Equations. Springer, New York, NY.
Paper not yet in RePEc: Add citation now
Renò, R. (2006). Nonparametric estimation of stochastic volatility models. Economics Letters, 90:390–395.
Renò, R. (2008). Nonparametric estimation of the diffusion coefficient of stochastic volatility models.
- Revuz, D. and Yor, M. (1998). Continuous Martingales and Brownian Motion. Springer, New York, NY.
Paper not yet in RePEc: Add citation now
- Touati, A. (1987). TheÃŒÂorèmes limites pour des processus de Markov reÃŒÂcurrents. Comptes Rendus de I’AcadeÃŒÂmie des Sciences - Series I - Mathematics, 305:841–844.
Paper not yet in RePEc: Add citation now
- Ueltzhöfer, F. A. J. (2013). On non-parametric estimation of the LeÃŒÂvy kernel of Markov processes. Stochastic Processes and their Applications, 123:3663–3709.
Paper not yet in RePEc: Add citation now