Abadie, A., and G. W. Imbens (2006): Large Sample Properties of Matching Estimators for Average Treatment Effects, Econometrica, 74(1), 235-267.
Abrevaya, J., Y.-C. Hsu, and R. P. Lieli (2015): Estimating Conditional Average Treatment Effects, Journal of Business & Economic Statistics, 33:4, 485-505, doi: 10.1080/07350015.2014.975555.
Advani, A., T. Kitagawa, and T. Słoczyński (2018): Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies, IZA DP No. 11862.
- Ascarza, E. (2018): Retention Futility: Targeting High Risk Customers Might Be Ineffective. Journal of Marketing Research, 55(1), 80–98.
Paper not yet in RePEc: Add citation now
- Athey, S. (2017): Beyond prediction: Using big data for policy problems, Science 355,483–485.
Paper not yet in RePEc: Add citation now
- Athey, S., and G. W. Imbens (2016): Recursive Partitioning for Heterogeneous Causal Effects, Proceedings of the National Academy of Sciences of the United States of America, 113(27), 7353–7360.
Paper not yet in RePEc: Add citation now
Athey, S., and G. W. Imbens (2017): The State of Applied Econometrics: Causality and Policy Evaluation, Journal of Economic Perspectives, 31 (7). 3-32.
Athey, S., J. Tibshirani, and S. Wager (2018): Generalized Random Forests, arXiv: 1610.01271v4, forthcoming in the Annals of Statistics.
Belloni, A., V. Chernozhukov, and Y. Wei (2016): Post-Selection Inference for Generalized Linear Models with Many Controls, Journal of Business & Economic Statistics, 34, 606–619.
Belloni, A., V. Chernozhukov, I. Fernández-Val, and C. Hansen (2017): Program Evaluation and Causal Inference with High-Dimensional Data, Econometrica, 85, 233–298.
- Bertrand, M., B. Crépon, A. Marguerie, and P. Premand (2017): Contemporaneous and Post- Program Impacts of a Public Works Program: Evidence from Côte d’Ivoire. Washington D.C. Breiman, L. (2001): Random Forests, Machine Learning, 45(1), 5–32.
Paper not yet in RePEc: Add citation now
- Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen (1984): Classification and regression trees. CRC press.
Paper not yet in RePEc: Add citation now
- Card, D., J. Kluve, and A. Weber (2017): What Works? A Meta Analysis of Recent Active Labor Market Program Evaluations, forthcoming in the Journal of the European Economic Association.
Paper not yet in RePEc: Add citation now
Chen, S, L. Tian, T. Cai, and M. Yu (2017): A General Statistical Framework for Subgroup Identiï¬cation and Comparative Treatment Scoring. Biometrics, 73, 1199–1209.
- Chou, P. A. (1991): Optimal Partitioning for Classification and Regression Trees, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13 (4), 340-354.
Paper not yet in RePEc: Add citation now
- D’Amour, A., P. Ding, A. Feller, L. Lei, and J. Sekhon (2018): Overlap in observational studies with high-dimensional covariates, arXiv: 1711.02582v3.
Paper not yet in RePEc: Add citation now
Davis, J. M., and S. B. Heller (2017): Using causal forests to predict treatment heterogeneity: An application to summer jobs, American Economic Review, 107, 546–550.
- Denil, M., D. Matheson, N. de Freitas (2014): Narrowing the Gap: Random Forests In Theory and In Practice, Proceedings of the 31 st International Conference on Machine Learning, Beijing, China, 2014. JMLR: W&CP, vol. 32.
Paper not yet in RePEc: Add citation now
- Fan, Y., J. L. and J. Wang (2018): DNN: A Two-Scale Distributional Tale of Heterogeneous Treatment Effect Inference, arXiv: 1808.08469v1.
Paper not yet in RePEc: Add citation now
- Friedberg, R., J. Tibshirani, S. Athey, and S. Wager (2018): Local Linear Forests, arXiv: 1807.11408v1.
Paper not yet in RePEc: Add citation now
Gerfin, M., and M. Lechner (2002): Microeconometric Evaluation of the Active Labour Market Policy in Switzerland, The Economic Journal, 112, 854-893.
- Hastie, T., R. Tibshirani, and J. Friedman (2009): The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edition, Springer (10th printing with corrections, 2013).
Paper not yet in RePEc: Add citation now
- Hill, J. L. (2011): Bayesian Nonparametric Modelling for Causal Inference, Journal of Computational and Graphical Statistics, 20(1), 217–240.
Paper not yet in RePEc: Add citation now
Huber, M., M. Lechner, and C. Wunsch (2013): The performance of estimators based on the propensity score, Journal of Econometrics, 175 (1), 1-21.
Huber, M., M. Lechner, and G. Mellace (2017): Why Do Tougher Caseworkers Increase Employment? The Role of Programme Assignment as a Causal Mechanism, Review of Economics and Statistics, 99 (1), 180-183.
- Hurwicz, L. (1950): Generalization of the Concept of Identification, in Statistical Inference in Dynamic Economic Models, Cowles Commission Monograph, 10, New York: Wiley.
Paper not yet in RePEc: Add citation now
- Imai, K., and M. Ratkovic (2013): Estimating treatment effect heterogeneity in randomized program evaluation, Annals of Applied Statistics, 7(1), 443–470.
Paper not yet in RePEc: Add citation now
- Imbens, G. W. (2000): The Role of the Propensity Score in Estimating Dose-Response Functions, Biometrika, 87, 706-710.
Paper not yet in RePEc: Add citation now
Imbens, G. W. (2004): Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review, The Review of Economics and Statistics, 86, 4–29.
- Künzel, S. R., J. S. Sekhon, P. J. Bickel, and B. Yu (2018): Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning, arXiv: 1706.03461v4.
Paper not yet in RePEc: Add citation now
Knaus, M. C., M. Lechner, and A. Strittmatter (2017): Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach, arXiv: 1709.10279v2.
- Knaus, M. C., M. Lechner, and A. Strittmatter (2018): The Performance of Machine Learning Approaches to Estimate Heterogeneous Policy Effects, arXiv: 1810.13237v1.
Paper not yet in RePEc: Add citation now
Lechner, M. (2001): Identification and Estimation of Causal Effects of Multiple Treatments under the Conditional Independence Assumption, in: M. Lechner and F. Pfeiffer (eds.), Econometric Evaluation of Active Labour Market Policies, 43-58, Heidelberg: Physica.
Lechner, M., and A. Strittmatter (2017): Practical Procedures to Deal with Common Support Problems in Matching Estimation, forthcoming in Econometric Reviews, doi: 10.1080/07474938.2017.1318509.
Lechner, M., and C. Wunsch (2013): Sensitivity of matching-based program evaluations to the availability of control variables, Labour Economics: An International Journal, 21, 111-121.
Lee, S., R. Okui, and Y.-J. Whang (2017): Doubly robust uniform confidence band for the conditional average treatment effect function, Journal of Applied Econometrics, 32:1207–1225, doi: 10.1002/jae.2574.
Nie, X., and S. Wager (2018): Quasi-Oracle Estimation of Heterogeneous Treatment Effects, arXiv: 1712.04912v2.
Oprescu, M., V. Syrgkanis, and Z. S. Wu (2018): Orthogonal Random Forest for Heterogeneous Treatment Effect Estimation, arXiv: 1806.03467v2.
- Powers, S., J. Qian, K. Jung, A. Schuler, N. H. Shah, T. Hastie, and R. Tibshirani (2018): Some methods for heterogeneous treatment effect estimation in high dimensions, Statistics in Medicine, 37(11), 1767–1787.
Paper not yet in RePEc: Add citation now
- Qian, M., and S. A. Murphy, (2011): Performance Guarantees for Individualized Treatment Rules, Annals of Statistics, 39(2), 1180-1210.
Paper not yet in RePEc: Add citation now
Ramachandra, V. (2018): Deep Learning for Causal Inference, arXiv: 1803.00149v1.
- Rubin, D. B. (1974): Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies, Journal of Educational Psychology, 66, 688-701.
Paper not yet in RePEc: Add citation now
- Schuler, A., K. Jung, R. Tibshirani, T. Hastie, and N. Shah (2017): Synth Validation: Selecting the Best Causal Inference Method for a Given Dataset, arXiv: 1711.00083v1.
Paper not yet in RePEc: Add citation now
- Schwab, P., L. Linhardt, and W. Karlen (2018): Perfect Match: A Simple Method for Learning Representations for Counterfactual Inference with Neural Networks, arXiv: 1810.00656v2.
Paper not yet in RePEc: Add citation now
- Shalit, U., F. D. Johansson, and D. Sontag (2017): Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70.
Paper not yet in RePEc: Add citation now
Strittmatter, A. (2018): What is the Value Added of Using Causal Machine Learning Methods in the Evaluation of a Welfare Experiment? , mimeo.
- Su, X., C.-L. Tsai, H. Wang, D. M. Nickerson, and B. Li (2009): Subgroup analysis via recursive partitioning, Journal of Machine Learning Research, 10, 141–158.
Paper not yet in RePEc: Add citation now
Taddy, M., M. Gardner, L. Chen, and D. Draper (2016): A nonparametric Bayesian analysis of heterogeneous treatment effects in digital experimentation, Journal of Business and Economic Statistics, 34(4), 661–672.
Tian, L., A. A. Alizadeh, A. J. Gentles, and R. Tibshirani (2014): A Simple Method for Estimating Interactions between a Treatment and a Large Number of Covariates, Journal of the American Statistical Association, 109 (508), 1517–1532.
Wager, S., and S. Athey (2018): Estimation and Inference of Heterogeneous Treatment Effects using Random Forests, forthcoming in the Journal of the American Statistical Society.
- Wager, S., T. Hastie, and B. Efron (2014): Confidence Intervals for Random Forests: The Jackknife and the Infinitesimal Jackknife, Journal of Machine Learning Research, 15, 1625-1651.
Paper not yet in RePEc: Add citation now
- Wang, F., and C. Rudin (2015): Causal Falling Rule Lists, Journal of Machine Learning Research, 38, 1013-1022.
Paper not yet in RePEc: Add citation now
- Wendling, T., K. Jung, A. Callahan, A. Schuler, N. H. Shah, B. Gallego (2018): Comparing methods for estimation of heterogeneous treatment effects using observational data from health care databases, Statistics in Medicine, 1–16.
Paper not yet in RePEc: Add citation now
- Xie, Y., J. E. Brand, and B. Jann (2012): Estimating Heterogeneous Treatment Effects with Observational Data, Sociological Methodology, Volume 42, 314–347, doi: 10.1177/0081175012452652.
Paper not yet in RePEc: Add citation now
- Zhao, Q., D. S. Small, and A. Ertefaie (2017): Selective Inference for Effect Modification via the LASSO, arXiv: 1705.08020v2.
Paper not yet in RePEc: Add citation now