A review of the binomial and trinomial models for option pricing... 85 Romer, D. H. (1993). Rational asset-price movements without news. The American Economic Review, 83(5), 1112-1130.
Akerlof, G. (2002). Behavioral macroeconomics and macroeconomic behavior. The American Economic Review, 92(3), 411-433.
Bates, D. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in Deutschemark options. Review of Financial Studies, (9), 69-108.
Bowei, C., and Wang, J. ( 2015). A lattice framework for pricing display and options with the stochastic volatility model. Electronic Commerce Research and Applications, 14(6), 465-479.
- Boyle, P. (1986). Option valuation using a three-jump process. International Options Journal, (3), 7-12.
Paper not yet in RePEc: Add citation now
Boyle, P. (1988). A lattice framework for option pricing with two state variables. Journal of Financial and Quantitative Analysis, 3, 1-12.
Campbell, J., and Shiller, R. J. (1987). Cointegration and tests of present value models. Journal of Political Economy, (97), 1062-1088.
- Carr, P., and Madan, B. D. (1999). Option valuation using the fast Fourier transform. Quantitative Finance, (1), 19-37.
Paper not yet in RePEc: Add citation now
- Cootner, P. H. (1964). The random character of stock market prices. Cambridge, Mass.: MIT Press.
Paper not yet in RePEc: Add citation now
- Cox, J. C., and Ross, S. A. (1975). The pricing of options for Jump processes. Rodney L. White Center for Financial Research (Working Paper No. 2-75). University of Pennsylvania, Philadelphia, PA.
Paper not yet in RePEc: Add citation now
Cox, J. C., and Ross, S. A. (1976). The valuation of options for alternative stochastic processes. Journal of Financial Economics, (3), 145-166.
Cox, J. C., Ross, S. A., and Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229.
Dushko Josheski, Mico Apostolov Black, F., and Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3), 637-654.
Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383-417.
Gurdip, B., and Chen, Z. (1997). An alternative valuation model for contingent claims. Journal of Financial Economics, 44(1), 123-165.
- Haahtela, T. (2010). Recombining trinomial tree for real option valuation with changing volatility. Aalto University (Working Paper Series).
Paper not yet in RePEc: Add citation now
Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, (6), 327-343.
- Hull, J. C. (2017). Options, Futures, and Other Derivatives, Pearson.
Paper not yet in RePEc: Add citation now
- Jarrow, R., and Rudd, A. (1983). Option pricing. Homewood, Illinois.
Paper not yet in RePEc: Add citation now
Kamrad, B., and Ritchken, P. (1991). Multinomial approximating models for option with k states variables. Management Sciences, 37(23), 1640-1652.
- Kiyosi, I. (1944). Stochastic integral. Proc. Imperial Acad. Tokyo, (20), 519-524.
Paper not yet in RePEc: Add citation now
Leisen, D., and Reimer, M. (1996). Binomial models for option valuation – examining and improving convergence. Applied Mathematical Finance, 3(4), 319-346.
Merton, R. C. (1973), Theory of rational option pricing. Bell Journal of Economics, 4(1), p. 141-183.
- Merton, R. C. (1973a). Continuous-time speculative processes': Appendix to Paul A. Samuelson's 'mathematics of speculative price'. SIAM Review 15 (January 1973), 34-38.
Paper not yet in RePEc: Add citation now
Merton, R. C. (1973b). An intertemporal capital asset pricing model. Econometrica, 41(5), 867-887.
Merton, R. C. (1973c). The relationship between put and call option prices: Comment. Journal of Finance, 28(1), 183-184.
Merton, R. C. (1975). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, (3), 125-144.
Merton, R. C., and Samuleson, P. (1974). Fallacy of the log-normal approximation to optimal portfolio decision-making over many periods. Journal of Financial Economics, 1(1), 67-94.
- Peizer, D. B., and Pratt, J. W. (1968). A normal approximation for binomial, f, beta, and other common related tail probabilities, I, The Journal of the American Statistical Association, (63), 1416-1456.
Paper not yet in RePEc: Add citation now
- Pratt, J. W. (1968). A normal approximation for binomial, f, beta, and other common, related tail probabilities, II. The Journal of the American Statistical Association, (63), 1457-1483.
Paper not yet in RePEc: Add citation now
- Puspita, E., Agustina, F., and Sispiyati, R. (2013). Convergence numerically of trinomial model in European option pricing. International Research Journal of Business Studies, 6(3), 195-201.
Paper not yet in RePEc: Add citation now
- Quote as: Josheski, D., Apostolov, M. (2020). A review of the binomial and trinomial models for option pricing and their convergence to the Black-Scholes model determined option prices. Econometrics. Ekonometria. Advances in Applied Data Analysis, 24(2).
Paper not yet in RePEc: Add citation now
Rendleman, R., and Bartter, B. (1979). Two-state option pricing. Journal of Finance, (24), 1093-1110.
Rendleman, R., and Bartter, B. (1980). The pricing of options on debt securities. Journal of Financial and Quantitative Analysis, (15), 11-24.
Ross, S., (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341--360. doi:10.1016/0022-0531(76)90046-6 Samuelson, P. A. (1965). Rational theory of warrant pricing. Industrial Management Review, (6), 13-31.
Scott, L. (1997). Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: Application of Fourier inversion methods. Mathematical Finance, (7), 413-426.
Smith, C. W. (1976). Option pricing: A review. Journal of Financial Economics, 3(1-2), 3-51.
Tian, Y. (1993). A modified lattice approach to option pricing. Journal of Futures Markets, 13(5), 563-577.
Trigeorgis, L. (1991). A log-transformed binomial analysis method for valuing complex multi-option investments. Journal of Financial and Quantitative Analysis, 26(3), 309-326.