create a website

Demand Forecasting of Retail Sales Using Data Analytics and Statistical Programming. (2020). Stavros, Ponis ; Panagiota, Lalou ; Orestis, Efthymiou.
In: Management & Marketing.
RePEc:vrs:manmar:v:15:y:2020:i:2:p:186-202:n:4.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 23

References cited by this document

Cocites: 22

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Aburto, L., & Weber, R. (2007). Improved supply chain management based on hybrid demand forecasts. Applied Soft Computing, 7(1), 136-144. https://doi.org/10.1016/j.asoc.2005.06.001
    Paper not yet in RePEc: Add citation now
  2. Aksoy, A., Ozturk, N., & Sucky, E. (2012). A decision support system for demand forecasting in the clothing industry. International Journal of Clothing Science and Technology, 24(4), 221-236. https://doi.org/10.1108/09556221211232829
    Paper not yet in RePEc: Add citation now
  3. Alon, I., Qi, M., & Sadowski, R. J. (2001). Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods. Journal of retailing and consumer services, 8(3), 147-156. https://doi.org/10.1016/S0969-6989(00)00011-4
    Paper not yet in RePEc: Add citation now
  4. Aslanargun, A., Mammadov, M., Yazici, B., & Yolacan, S. (2007). Comparison of ARIMA, neural networks and hybrid models in time series: tourist arrival forecasting. Journal of Statistical Computation and Simulation, 77(1), 29-53. https://doi.org/10.1080/10629360600564874
    Paper not yet in RePEc: Add citation now
  5. Au, K. F., Choi, T. M., & Yu, Y. (2008). Fashion retail forecasting by evolutionary neural networks. International Journal of Production Economics, 114(2), 615-630. https://doi.org/10.1016/j.ijpe.2007.06.013

  6. Barreto, L., Amaral, A., & Pereira, T. (2017). Industry 4.0 implications in logistics: an overview. Procedia Manufacturing, 13, 1245-1252. https://doi.org/10.1016/j.promfg.2017.09.045
    Paper not yet in RePEc: Add citation now
  7. Boone, T., Ganeshan, R., Jain, A., & Sanders, N. R. (2019). Forecasting sales in the supply chain: Consumer analytics in the big data era. International Journal of Forecasting, 35(1), 170-180. https://doi.org/10.1016/j.ijforecast.2018.09.003

  8. Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
    Paper not yet in RePEc: Add citation now
  9. Chambers J., Mullick K. & Smith D., (1971), How to Choose the Right Forecasting Technique. [online]. Available at: https://hbr.org/1971/07/how-to-choose-the-right-forecasting-technique [accessed at 27.11.2019].
    Paper not yet in RePEc: Add citation now
  10. Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive accuracy. Journal of Business & economic statistics, 20(1), 134-144. https://doi.org/10.1198/073500102753410444

  11. Efthymiou, O. Κ., & Ponis, S. T. (2019). Current Status of Industry 4.0 in Material Handling Automation and In-house Logistics. International Journal of Industrial and Manufacturing Engineering, 13(10), 1370-1374. https://doi.org/10.5281/zenodo.3566333
    Paper not yet in RePEc: Add citation now
  12. Fildes, R., Ma, S., & Kolassa, S. (2019). Retail forecasting: Research and practice. International Journal of Forecasting (in press). https://doi.org/10.1016/j.ijforecast.2019.06.004

  13. Gardner Jr, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1-28. https://doi.org/10.1002/for.3980040103
    Paper not yet in RePEc: Add citation now
  14. Geurts, M. D., & Kelly, J. P. (1986). Forecasting retail sales using alternative models. International Journal of Forecasting, 2(3), 261-272. https://doi.org/10.1016/0169-2070(86)90046-4

  15. Kohzadi, N., Boyd, M. S., Kermanshahi, B., & Kaastra, I. (1996). A comparison of artificial neural network and time series models for forecasting commodity prices. Neurocomputing, 10(2), 169-181. https://doi.org/10.1016/0925-2312(95)00020-8
    Paper not yet in RePEc: Add citation now
  16. Kuo, C., & Reitsch, A. (1995). Neural networks vs. conventional methods of forecasting. The Journal of Business Forecasting, 14(4), 17.
    Paper not yet in RePEc: Add citation now
  17. Sartorius, L. C., & Mohn, N. C. (1976). Sales forecasting models: a diagnostic approach (No. 69). Georgia State University Press.
    Paper not yet in RePEc: Add citation now
  18. Seeger, M. W., Salinas, D., & Flunkert, V. (2016). Bayesian intermittent demand forecasting for large inventories. In: Advances in Neural Information Processing Systems (pp. 4646-4654).
    Paper not yet in RePEc: Add citation now
  19. Silver Ed. A., Pyke D. F. & Peterson R., (1998). Inventory Management and Production Planning and Scheduling, 3, pp. 86-98. Wiley.
    Paper not yet in RePEc: Add citation now
  20. Takahashi, K., & Nakamura, N. (2004). Push, pull, or hybrid control in supply chain management. International Journal of computer integrated manufacturing, 17(2), 126-140. https://doi.org/10.1080/09511920310001593083
    Paper not yet in RePEc: Add citation now
  21. Vassakis, K., Petrakis, E., & Kopanakis, I. (2018). Big data analytics: Applications, prospects and challenges. In: Skourletopoulos G., Mastorakis G., Mavromoustakis C., Dobre C., Pallis E. (eds) Mobile Big Data. Lecture Notes on Data Engineering and Communications Technologies, vol 10. (pp. 3-20). Springer. https://doi.org/10.1007/978-3-319-67925-9_1
    Paper not yet in RePEc: Add citation now
  22. Wong, W. K., & Guo, Z. X. (2010). A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. International Journal of Production Economics, 128(2), 614-624. https://doi.org/10.1016/j.ijpe.2010.07.008

  23. Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2), 501-514. https://doi.org/10.1016/j.ejor.2003.08.037

Cocites

Documents in RePEc which have cited the same bibliography

  1. Hybrid convolutional long short‐term memory models for sales forecasting in retail. (2024). Chew, Ek Peng ; Yuan, Xueming ; de Castro, Thais.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:43:y:2024:i:5:p:1278-1293.

    Full description at Econpapers || Download paper

  2. Demand forecasting for fashion products: A systematic review. (2024). Venkitasubramony, Rakesh ; Swaminathan, Kritika.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:40:y:2024:i:1:p:247-267.

    Full description at Econpapers || Download paper

  3. Retail forecasting: Research and practice. (2022). Kolassa, Stephan ; Ma, Shaohui ; Fildes, Robert.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:38:y:2022:i:4:p:1283-1318.

    Full description at Econpapers || Download paper

  4. A data-driven forecasting approach for newly launched seasonal products by leveraging machine-learning approaches. (2021). Kei, Vicky Wing ; Efendigil, Tugba Firdolas ; Kharfan, Majd.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:303:y:2021:i:1:d:10.1007_s10479-020-03666-w.

    Full description at Econpapers || Download paper

  5. Demand Forecasting of Retail Sales Using Data Analytics and Statistical Programming. (2020). Stavros, Ponis ; Panagiota, Lalou ; Orestis, Efthymiou.
    In: Management & Marketing.
    RePEc:vrs:manmar:v:15:y:2020:i:2:p:186-202:n:4.

    Full description at Econpapers || Download paper

  6. Demand forecasting in retail operations for fashionable products: methods, practices, and real case study. (2020). Siqin, Tana ; Ren, Shuyun ; Chan, Hau-Ling.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:291:y:2020:i:1:d:10.1007_s10479-019-03148-8.

    Full description at Econpapers || Download paper

  7. Forecasting third-party mobile payments with implications for customer flow prediction. (2020). Ma, Shaohui ; Fildes, Robert.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:36:y:2020:i:3:p:739-760.

    Full description at Econpapers || Download paper

  8. Application of Facebooks Prophet Algorithm for Successful Sales Forecasting Based on Real-world Data. (2020). Hodzic, Kerim ; Korjenic, Kemal ; Zunic, Emir ; Donko, Dzenana.
    In: Papers.
    RePEc:arx:papers:2005.07575.

    Full description at Econpapers || Download paper

  9. Retail forecasting: research and practice. (2019). Kolassa, Stephan ; Ma, Shaohui ; Fildes, Robert.
    In: MPRA Paper.
    RePEc:pra:mprapa:89356.

    Full description at Econpapers || Download paper

  10. Googling Fashion: Forecasting Fashion Consumer Behaviour Using Google Trends. (2019). Gee, Liz ; Hassani, Hossein ; Silva, Emmanuel Sirimal ; Madsen, Dag Oivind.
    In: Social Sciences.
    RePEc:gam:jscscx:v:8:y:2019:i:4:p:111-:d:219992.

    Full description at Econpapers || Download paper

  11. A novel self-organizing constructive neural network for estimating aircraft trip fuel consumption. (2019). Khan, Waqar Ahmed ; Liu, Shi Qiang ; Chung, Sai-Ho ; Ma, Hoi-Lam ; Chan, Ching Yuen.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:132:y:2019:i:c:p:72-96.

    Full description at Econpapers || Download paper

  12. Transshipments of cross-channel returned products. (2019). Roodbergen, Kees Jan ; van der Heide, Gerlach ; Dijkstra, Arjan S.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:209:y:2019:i:c:p:70-77.

    Full description at Econpapers || Download paper

  13. Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research. (2017). Chan, Hau-Ling ; Shen, Bin.
    In: Asia-Pacific Journal of Operational Research (APJOR).
    RePEc:wsi:apjorx:v:34:y:2017:i:01:n:s0217595917400012.

    Full description at Econpapers || Download paper

  14. A Comparative Study on Fashion Demand Forecasting Models with Multiple Sources of Uncertainty. (2017). Ren, Shuyun ; Ram, Pratibha ; Chan, Hau-Ling.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:257:y:2017:i:1:d:10.1007_s10479-016-2204-6.

    Full description at Econpapers || Download paper

  15. The influence of product involvement and emotion on short-term product demand forecasting. (2017). Belvedere, Valeria ; Goodwin, Paul.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:33:y:2017:i:3:p:652-661.

    Full description at Econpapers || Download paper

  16. Forecasting aggregate retail sales: The case of South Africa. (2015). Majumdar, Anandamayee ; GUPTA, RANGAN ; Balcilar, Mehmet ; Aye, Goodness C..
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:160:y:2015:i:c:p:66-79.

    Full description at Econpapers || Download paper

  17. Assessing and hedging the cost of unseasonal weather: Case of the apparel sector. (2015). Brusset, Xavier ; Fortin, Maxime ; Bertrand, Jean-Louis.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:244:y:2015:i:1:p:261-276.

    Full description at Econpapers || Download paper

  18. Forecasting Aggregate Retail Sales: The Case of South Africa. (2014). Majumdar, Anandamayee ; GUPTA, RANGAN ; Balcilar, Mehmet ; Balcilarauthor-Name, Mehmet ; Aye, Goodness C.
    In: Working Papers.
    RePEc:emu:wpaper:15-21.pdf.

    Full description at Econpapers || Download paper

  19. Forecasting Aggregate Retail Sales: The Case of South Africa. (2013). Majumdar, Anandamayee ; GUPTA, RANGAN ; Balcilar, Mehmet ; Aye, Goodness C..
    In: Working Papers.
    RePEc:pre:wpaper:201312.

    Full description at Econpapers || Download paper

  20. A Stackelberg model of pricing of complementary goods under information asymmetry. (2011). Zhu, Xiaowei ; Yue, Xiaohang ; Mukhopadhyay, Samar K..
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:134:y:2011:i:2:p:424-433.

    Full description at Econpapers || Download paper

  21. Forecasting demand for single-period products: A case study in the apparel industry. (2011). Mostard, Julien ; Teunter, Ruud ; de Koster, Rene.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:211:y:2011:i:1:p:139-147.

    Full description at Econpapers || Download paper

  22. A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. (2010). Guo, Z. X. ; Wong, W. K..
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:128:y:2010:i:2:p:614-624.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 20:49:26 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.