Özmen, A., Yılmaz, Y., & Weber, G. W. (2018). Natural gas consumption forecast with MARS and CMARS models for residential users. Energy Economics, 70, pp. 357–381. doi: 10.1016/j.eneco.2018.01.022.
Amber, K. P., Ahmad, R., Aslam, M. W., Kousar, A., Usman, M., & Khan, M. S. (2018). Intelligent techniques for forecasting electricity consumption of buildings. Energy, 157, pp. 886–893. doi: 10.1016/j.energy.2018.05.155.
- Annual Electricity Report (2016). France.
Paper not yet in RePEc: Add citation now
- Baldigara, T., & Koic, M. (2015). Modelling occupancy rates in croatian hotel industry. International Journal of Business Administration, 6(3), pp. 121–131. doi: 10.5430/ijba.v6n3p121.
Paper not yet in RePEc: Add citation now
- Bolattürk, A. (2008). Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey. Building and Environment, 43(6), pp. 1055–1064. doi: 10.1016/j.buildenv.2007.02.014.
Paper not yet in RePEc: Add citation now
- Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control, 5th edn. Wiley.
Paper not yet in RePEc: Add citation now
- Calis, G., Atalay, S. D., Kuru, M., & Mutlu, N. (2017). Forecasting occupancy for demand driven HVAC operations using time series analysis. Journal of Asian Architecture and Building Engineering, 16(3), pp. 655–660. doi: 10.3130/jaabe.16.655.
Paper not yet in RePEc: Add citation now
- Cao, X., Dai, X., & Liu, J. (2016). Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy and Buildings, 128, pp. 198–213. doi: 10.1016/j.enbuild.2016.06.089.
Paper not yet in RePEc: Add citation now
D’Amico, A., Panno, D., Giuseppina, C., & Ferrari, S. (2019). Building energy demand assessment through heating degree days: The importance of a climatic dataset. Applied Energy, 242(December 2018), pp. 1285–1306. doi: 10.1016/J.APENERGY.2019.03.167.
- Dombayci, Ö. A. (2007). The environmental impact of optimum insulation thickness for external walls of buildings. Building and Environment, 42(11), pp. 3855–3859. doi: 10.1016/j.buildenv.2006.10.054.
Paper not yet in RePEc: Add citation now
- Durmayaz, A., & Kadioglu, M. (2003). Heating energy requirements and fuel consumptions in the biggest city centers of Turkey. Energy Conversion and Management, 44(7), pp. 1177–1192. doi: 10.1016/S0196-8904(02)00097-3.
Paper not yet in RePEc: Add citation now
Durmayaz, A., Kadioglu, M., & En, Z. (2000). An application of the degree-hours method to estimate the residential heating energy requirement and fuel consumption in Istanbul. Energy, 25(12), pp. 1245–1256. doi: 10.1016/S0360-5442(00)00040-2.
- Elizbarashvili, M., Chartolani, G., & Khardziani, T. (2018). Variations and trends of heating and cooling degree-days in Georgia for 1961–1990 year period. Annals of Agrarian Science, 16(2), pp. 152–159. doi: 10.1016/j.aasci.2018.03.004.
Paper not yet in RePEc: Add citation now
- EU Strategy for Heating and Cooling. (2019). Journal of Chemical Information and Modeling. Available at: https://ec.europa.eu/energy/en/topics/energy-efficiency/heating-and-cooling.
Paper not yet in RePEc: Add citation now
Fan, J. L., Hu, J. W., & Zhang, X. (2019). Impacts of climate change on electricity demand in China: An empirical estimation based on panel data. Energy, 170, pp. 880–888. doi: 10.1016/j.energy.2018.12.044.
- Idchabani, R., Garoum, M., & Khaldoun, A. (2015). Analysis and mapping of the heating and cooling degree-days for Morocco at variable base temperatures. International Journal of Ambient Energy, 36(4), pp. 190–198. doi: 10.1080/01430750.2013.842497.
Paper not yet in RePEc: Add citation now
- IPCC (2007). In Climate Change 2007: Synthesis Report. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden P.J. & Hanson C.E. (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Paper not yet in RePEc: Add citation now
- Kam, H. J., Sung, J. O., & Park, R. W. (2010). Prediction of daily patient numbers for a regional emergency medical center using time series analysis. Healthcare Informatics Research, 16(3), pp. 158–165. doi: 10.4258/hir.2010.16.3.158.
Paper not yet in RePEc: Add citation now
Kohler, M., Blond, N., & Clappier, A. (2016). A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France). Applied Energy, 184, pp. 40–54. doi: 10.1016/j.apenergy.2016.09.075.
- Kurekci, N. A. (2016). Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers. Energy and Buildings, 118(825), pp. 197–213. doi: 10.1016/j.enbuild.2016.03.004.
Paper not yet in RePEc: Add citation now
- Kuru, M., & Calis, G. (2019). Forecasting heating degree days for energy demand modeling. pp. 8–13.
Paper not yet in RePEc: Add citation now
- Lewis, C. D. (1982). Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting. Butterworth Scientific, London, Boston.
Paper not yet in RePEc: Add citation now
Li, X. X. (2018). Linking residential electricity consumption and outdoor climate in a tropical city. Energy, 157, pp. 734–743. doi: 10.1016/j.energy.2018.05.192.
- Meng, Q., & Mourshed, M. (2017). Degree-day based non-domestic building energy analytics and modelling should use building and type specific base temperatures. Energy and Buildings, 155, pp. 260–268. doi: 10.1016/j.enbuild.2017.09.034.
Paper not yet in RePEc: Add citation now
- Mourshed, M. (2012). Relationship between annual mean temperature and degree-days. Energy and Buildings, 54, pp. 418–425. doi: 10.1016/j.enbuild.2012.07.024.
Paper not yet in RePEc: Add citation now
- NCSS data analysis. (2019). Time Series and Forecasting Methods in NCSS. Available at https:www.ncss.com/software/ncss/time-series-and-forecasting-in-ncss/.
Paper not yet in RePEc: Add citation now
- Neto, A. H., & Fiorelli, F. A. S. (2008). Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy and Buildings, 40(12), pp. 2169–2176. doi: 10.1016/j.enbuild.2008.06.013.
Paper not yet in RePEc: Add citation now
- OrtizBeviá, M. J., Sánchez-López, G., Alvarez-Garcìa, F. J., & Ruizdeelvira, A. (2012). Evolution of heating and cooling degree-days in Spain: Trends and interannual variability. Global and Planetary Change, 92–93, pp. 236–247. doi: 10.1016/j.gloplacha.2012.05.023.
Paper not yet in RePEc: Add citation now
Sarak, H., & Satman, A. (2003). The degree-day method to estimate the residential heating natural gas consumption in Turkey: A case study. Energy, 28(9), pp. 929–939. doi: 10.1016/S0360-5442(03)00035-5.
- Statistical Office of the European Union. (2019). Energy Statistics - Cooling and Heating Degree Days. Available at ec.europa.eu/eurostat/cache/metadata/fr/nrg_chdd_esms.htm.
Paper not yet in RePEc: Add citation now
- The Statistical Office of the European Union. (2019). Available at https://ec.europa.eu/eurostat/web/products-datasets/product?code=nrg_chdd_m.
Paper not yet in RePEc: Add citation now
- Trigaux, D., Oosterbosch, B., De Troyer, F., Allacker, K. (2017). A design tool to assess the heating energy demand and the associated financial and environmental impact in neighbourhoods. Energy and Buildings, 152, pp. 516–523. doi: 10.1016/j.enbuild.2017.07.057.
Paper not yet in RePEc: Add citation now
- Weatheronline.co.uk. (2019). Heating Degree Days and Cooling Degree Days Indices. Available at www.weatheronline.co.uk/faq/hdd_cdd.html.
Paper not yet in RePEc: Add citation now
- Witt, S. F., & Witt, C. A. (1992). Modeling and forecasting demand in tourism. Academic Press Ltd. Butterworth-Heinemann, London.
Paper not yet in RePEc: Add citation now
- Wu, J., Reddy, T. A., & Claridge, D. (1992). Statistical Modeling of Daily Energy Consumption in Commercial Buildings Using Multiple Regression and Principal Component Analysis. In: Proceedings of the Eighth Symposium on Improving Building Systems in Hot and Humid Climates. Dalla, Texas, pp. 155–164. doi: 10.20595/jjbf.19.0_3.
Paper not yet in RePEc: Add citation now
Yu, J., Yang, J., Tian, L., & Liao, D. (2009). A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China. Applied Energy, 86(11), pp. 2520–2529. doi: 10.1016/j.apenergy.2009.03.010.