- Abu‐Awwad, A., Maume‐Deschamps, V., & Ribereau, P. (2020). Fitting spatial max‐mixture processes with unknown extremal dependence class: An exploratory analysis tool. Test, 29, 479–522.
Paper not yet in RePEc: Add citation now
- Ahmed, M., Maume‐Deschamps, V., Ribereau, P., & Vial, C. (2017). A semi‐parametric estimation for max‐mixture spatial processes. arXivpreprint arXiv:1710.08120.
Paper not yet in RePEc: Add citation now
- Bacro, J., Gaetan, C., & Toulemonde, G. (2016). A flexible dependence model for spatial extremes. Journal of Statistical Planning and Inference, 172, 36–52.
Paper not yet in RePEc: Add citation now
Bortot, P., Coles, S., & Tawn, J. (2000). The multivariate gaussian tail model: An application to oceanographic data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 49(1), 31–049.
- Brown, B. M., & Resnick, S. I. (1977). Extreme values of independent stochastic processes. Journal of Applied Probability, 14(4), 732–739.
Paper not yet in RePEc: Add citation now
- Caterini, A. L., & Chang, D. E. (2018). Deep neural networks in a mathematical framework. Springer.
Paper not yet in RePEc: Add citation now
- Chattopadhyay, A., Hassanzadeh, P., & Pasha, S. (2020). Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio‐temporal climate data. Scientific Reports, 10(1), 1–13.
Paper not yet in RePEc: Add citation now
Coles, S., & Pauli, F. (2002). Models and inference for uncertainty in extremal dependence. Biometrika, 89(1), 183–196.
- Coles, S., Heffernan, J., & Tawn, J. (1999). Dependence measures for extreme value analyses. Extremes, 2(4), 339–365.
Paper not yet in RePEc: Add citation now
- De Haan, L. (1984). A spectral representation for max‐stable processes. The Annals of Probability, 12(4), 1194–1204.
Paper not yet in RePEc: Add citation now
- De Haan, L., & Ferreira, A. (2007). Extreme value theory: An introduction. Springer Science & Business Media.
Paper not yet in RePEc: Add citation now
- De Haan, L., & Pereira, T. T. (2006). Spatial extremes: Models for the stationary case. The Annals of Statistics, 34(1), 146–168.
Paper not yet in RePEc: Add citation now
- Embrechts, P., Klüppelberg, C., & Mikosch, T. (2013). Modelling extremal events: For insurance and finance (Vol. 33). Springer Science & Business Media.
Paper not yet in RePEc: Add citation now
- Ferreira, A., & De Haan, L. (2015). On the block maxima method in extreme value theory: PWM estimators. Annals of Statistics, 43(1), 276–298.
Paper not yet in RePEc: Add citation now
- Fukushima, K. (1980). Neocognitron: A self‐organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4), 193–202.
Paper not yet in RePEc: Add citation now
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778). Las Vegas, NV.
Paper not yet in RePEc: Add citation now
- Hooker, J., Duveiller, G., & Cescatti, A. (2018). A global dataset of air temperature derived from satellite remote sensing and weather stations. Scientific Data, 5(1), 1–11.
Paper not yet in RePEc: Add citation now
- Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243.
Paper not yet in RePEc: Add citation now
- Huser, R. (2021). EVA 2019 data competition on spatio‐temporal prediction of red sea surface temperature extremes. Extremes, 24, 91–104.
Paper not yet in RePEc: Add citation now
- Kabluchko, Z., Schlather, M., & De Haan, L. (2009). Stationary max‐stable fields associated to negative definite functions. The Annals of Probability, 37(5), 2042–2065.
Paper not yet in RePEc: Add citation now
- Kingma, D. & Ba, J. (2015). Adam: A method for stochastic optimization. Proceedings of the International Conference on Learning Representations (ICLR). San Diego.
Paper not yet in RePEc: Add citation now
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105.
Paper not yet in RePEc: Add citation now
- LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1990). Handwritten digit recognition with a back‐propagation network. In: M. I. Jordan, Y. LeCun, & S. A. Solla (Eds.), Advances in neural information processing systems (pp. 396–404).
Paper not yet in RePEc: Add citation now
- Ledford, A., & Tawn, J. A. (1996). Statistics for near independence in multivariate extreme values. Biometrika, 83(1), 169–187.
Paper not yet in RePEc: Add citation now
- Lin, Y., Mago, N., Gao, Y., Li, Y., Chiang, Y., Shahabi, C., & Ambite, J. L. (2018). Exploiting spatiotemporal patterns for accurate air quality forecasting using deep learning. Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (pp. 359–368). New York, NY.
Paper not yet in RePEc: Add citation now
- Liu, Y., Racah, E., Correa, J., Khosrowshahi, A., Lavers, D., Kunkel, K., Wehner, M., & Collins, W. (2016). Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv preprint arXiv:1605.01156.
Paper not yet in RePEc: Add citation now
Naveau, P., Guillou, A., Cooley, D., & Diebolt, J. (2009). Modelling pairwise dependence of maxima in space. Biometrika, 96(1), 1–17.
- Schlather, M. (2002). Models for stationary max‐stable random fields. Extremes, 5(1), 33–44.
Paper not yet in RePEc: Add citation now
Schlather, M., & Tawn, J. A. (2003). A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika, 90(1), 139–156.
Simpson, E. S., Wadsworth, J. L., & Tawn, J. A. (2020). Determining the dependence structure of multivariate extremes. Biometrika, 107(3), 513–532.
- Smith, R. L. (1990). Max‐stable processes and spatial extremes [Unpublished manuscript].
Paper not yet in RePEc: Add citation now
Uselis, A., Lukosevicius, M., & Stasytis, L. (2020). Localized convolutional neural networks for geospatial wind forecasting. Energies, 13(13), 3440.
Wadsworth, J. L., & Tawn, J. A. (2012). Dependence modelling for spatial extremes. Biometrika, 99(2), 253–272.
- Wang, S., Cao, J., & Yu, P. S. (2020). Deep learning for spatio‐temporal data mining: A survey. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2020.3025580.
Paper not yet in RePEc: Add citation now
- Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1492‐1500). IEEE, Honolulu, HI, USA.
Paper not yet in RePEc: Add citation now
- Yamashita, R., Nishio, M., Do, R., & Togashi, K. (2018). Convolutional neural networks: An overview and application in radiology. Insights into Imaging, 9(4), 611–629.
Paper not yet in RePEc: Add citation now
- Yu, H., Uy, W. I. T., & Dauwels, J. (2016). Modeling spatial extremes via ensemble‐of‐trees of pairwise copulas. IEEE Transactions on Signal Processing, 65(3), 571–586.
Paper not yet in RePEc: Add citation now
Zhu, Q., Chen, J., Zhu, L., Duan, X., & Liu, Y. (2018). Wind speed prediction with spatio–temporal correlation: A deep learning approach. Energies, 11(4), 705.
- Zuo, Z., Shuai, B., Wang, G., Liu, X., Wang, X., Wang, B., & Chen, Y. (2015). Convolutional recurrent neural networks: Learning spatial dependencies for image representation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 18‐26). IEEE, Boston, MA, USA.
Paper not yet in RePEc: Add citation now