create a website

Recognizing a spatial extreme dependence structure: A deep learning approach. (2022). Maumedeschamps, Veronique ; Ribereau, Pierre ; Ahmed, Manaf.
In: Environmetrics.
RePEc:wly:envmet:v:33:y:2022:i:4:n:e2714.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 39

References cited by this document

Cocites: 25

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Abu‐Awwad, A., Maume‐Deschamps, V., & Ribereau, P. (2020). Fitting spatial max‐mixture processes with unknown extremal dependence class: An exploratory analysis tool. Test, 29, 479–522.
    Paper not yet in RePEc: Add citation now
  2. Ahmed, M., Maume‐Deschamps, V., Ribereau, P., & Vial, C. (2017). A semi‐parametric estimation for max‐mixture spatial processes. arXivpreprint arXiv:1710.08120.
    Paper not yet in RePEc: Add citation now
  3. Bacro, J., Gaetan, C., & Toulemonde, G. (2016). A flexible dependence model for spatial extremes. Journal of Statistical Planning and Inference, 172, 36–52.
    Paper not yet in RePEc: Add citation now
  4. Bortot, P., Coles, S., & Tawn, J. (2000). The multivariate gaussian tail model: An application to oceanographic data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 49(1), 31–049.

  5. Brown, B. M., & Resnick, S. I. (1977). Extreme values of independent stochastic processes. Journal of Applied Probability, 14(4), 732–739.
    Paper not yet in RePEc: Add citation now
  6. Caterini, A. L., & Chang, D. E. (2018). Deep neural networks in a mathematical framework. Springer.
    Paper not yet in RePEc: Add citation now
  7. Chattopadhyay, A., Hassanzadeh, P., & Pasha, S. (2020). Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio‐temporal climate data. Scientific Reports, 10(1), 1–13.
    Paper not yet in RePEc: Add citation now
  8. Coles, S., & Pauli, F. (2002). Models and inference for uncertainty in extremal dependence. Biometrika, 89(1), 183–196.

  9. Coles, S., Heffernan, J., & Tawn, J. (1999). Dependence measures for extreme value analyses. Extremes, 2(4), 339–365.
    Paper not yet in RePEc: Add citation now
  10. De Haan, L. (1984). A spectral representation for max‐stable processes. The Annals of Probability, 12(4), 1194–1204.
    Paper not yet in RePEc: Add citation now
  11. De Haan, L., & Ferreira, A. (2007). Extreme value theory: An introduction. Springer Science & Business Media.
    Paper not yet in RePEc: Add citation now
  12. De Haan, L., & Pereira, T. T. (2006). Spatial extremes: Models for the stationary case. The Annals of Statistics, 34(1), 146–168.
    Paper not yet in RePEc: Add citation now
  13. Embrechts, P., Klüppelberg, C., & Mikosch, T. (2013). Modelling extremal events: For insurance and finance (Vol. 33). Springer Science & Business Media.
    Paper not yet in RePEc: Add citation now
  14. Ferreira, A., & De Haan, L. (2015). On the block maxima method in extreme value theory: PWM estimators. Annals of Statistics, 43(1), 276–298.
    Paper not yet in RePEc: Add citation now
  15. Fukushima, K. (1980). Neocognitron: A self‐organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4), 193–202.
    Paper not yet in RePEc: Add citation now
  16. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778). Las Vegas, NV.
    Paper not yet in RePEc: Add citation now
  17. Hooker, J., Duveiller, G., & Cescatti, A. (2018). A global dataset of air temperature derived from satellite remote sensing and weather stations. Scientific Data, 5(1), 1–11.
    Paper not yet in RePEc: Add citation now
  18. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243.
    Paper not yet in RePEc: Add citation now
  19. Huser, R. (2021). EVA 2019 data competition on spatio‐temporal prediction of red sea surface temperature extremes. Extremes, 24, 91–104.
    Paper not yet in RePEc: Add citation now
  20. Kabluchko, Z., Schlather, M., & De Haan, L. (2009). Stationary max‐stable fields associated to negative definite functions. The Annals of Probability, 37(5), 2042–2065.
    Paper not yet in RePEc: Add citation now
  21. Kingma, D. & Ba, J. (2015). Adam: A method for stochastic optimization. Proceedings of the International Conference on Learning Representations (ICLR). San Diego.
    Paper not yet in RePEc: Add citation now
  22. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105.
    Paper not yet in RePEc: Add citation now
  23. LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1990). Handwritten digit recognition with a back‐propagation network. In: M. I. Jordan, Y. LeCun, & S. A. Solla (Eds.), Advances in neural information processing systems (pp. 396–404).
    Paper not yet in RePEc: Add citation now
  24. Ledford, A., & Tawn, J. A. (1996). Statistics for near independence in multivariate extreme values. Biometrika, 83(1), 169–187.
    Paper not yet in RePEc: Add citation now
  25. Lin, Y., Mago, N., Gao, Y., Li, Y., Chiang, Y., Shahabi, C., & Ambite, J. L. (2018). Exploiting spatiotemporal patterns for accurate air quality forecasting using deep learning. Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (pp. 359–368). New York, NY.
    Paper not yet in RePEc: Add citation now
  26. Liu, Y., Racah, E., Correa, J., Khosrowshahi, A., Lavers, D., Kunkel, K., Wehner, M., & Collins, W. (2016). Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv preprint arXiv:1605.01156.
    Paper not yet in RePEc: Add citation now
  27. Naveau, P., Guillou, A., Cooley, D., & Diebolt, J. (2009). Modelling pairwise dependence of maxima in space. Biometrika, 96(1), 1–17.

  28. Schlather, M. (2002). Models for stationary max‐stable random fields. Extremes, 5(1), 33–44.
    Paper not yet in RePEc: Add citation now
  29. Schlather, M., & Tawn, J. A. (2003). A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika, 90(1), 139–156.

  30. Simpson, E. S., Wadsworth, J. L., & Tawn, J. A. (2020). Determining the dependence structure of multivariate extremes. Biometrika, 107(3), 513–532.

  31. Smith, R. L. (1990). Max‐stable processes and spatial extremes [Unpublished manuscript].
    Paper not yet in RePEc: Add citation now
  32. Uselis, A., Lukosevicius, M., & Stasytis, L. (2020). Localized convolutional neural networks for geospatial wind forecasting. Energies, 13(13), 3440.

  33. Wadsworth, J. L., & Tawn, J. A. (2012). Dependence modelling for spatial extremes. Biometrika, 99(2), 253–272.

  34. Wang, S., Cao, J., & Yu, P. S. (2020). Deep learning for spatio‐temporal data mining: A survey. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2020.3025580.
    Paper not yet in RePEc: Add citation now
  35. Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1492‐1500). IEEE, Honolulu, HI, USA.
    Paper not yet in RePEc: Add citation now
  36. Yamashita, R., Nishio, M., Do, R., & Togashi, K. (2018). Convolutional neural networks: An overview and application in radiology. Insights into Imaging, 9(4), 611–629.
    Paper not yet in RePEc: Add citation now
  37. Yu, H., Uy, W. I. T., & Dauwels, J. (2016). Modeling spatial extremes via ensemble‐of‐trees of pairwise copulas. IEEE Transactions on Signal Processing, 65(3), 571–586.
    Paper not yet in RePEc: Add citation now
  38. Zhu, Q., Chen, J., Zhu, L., Duan, X., & Liu, Y. (2018). Wind speed prediction with spatio–temporal correlation: A deep learning approach. Energies, 11(4), 705.

  39. Zuo, Z., Shuai, B., Wang, G., Liu, X., Wang, X., Wang, B., & Chen, Y. (2015). Convolutional recurrent neural networks: Learning spatial dependencies for image representation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 18‐26). IEEE, Boston, MA, USA.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Modelling non-stationarity in asymptotically independent extremes. (2024). Murphy-Barltrop, C. J. R., ; Wadsworth, J L.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324001099.

    Full description at Econpapers || Download paper

  2. New estimation methods for extremal bivariate return curves. (2023). Wadsworth, J L ; Eastoe, E F ; C. J. R. Murphy‐Barltrop, .
    In: Environmetrics.
    RePEc:wly:envmet:v:34:y:2023:i:5:n:e2797.

    Full description at Econpapers || Download paper

  3. Reweighted madogram-type estimator of Pickands dependence function. (2023). Zou, Nan.
    In: Statistics & Probability Letters.
    RePEc:eee:stapro:v:195:y:2023:i:c:s0167715223000147.

    Full description at Econpapers || Download paper

  4. Recognizing a spatial extreme dependence structure: A deep learning approach. (2022). Maumedeschamps, Veronique ; Ribereau, Pierre ; Ahmed, Manaf.
    In: Environmetrics.
    RePEc:wly:envmet:v:33:y:2022:i:4:n:e2714.

    Full description at Econpapers || Download paper

  5. Non-parametric estimator of a multivariate madogram for missing-data and extreme value framework. (2022). Laloe, Thomas ; Toulemonde, Gwladys ; di Bernardino, Elena ; Boulin, Alexis.
    In: Journal of Multivariate Analysis.
    RePEc:eee:jmvana:v:192:y:2022:i:c:s0047259x22000690.

    Full description at Econpapers || Download paper

  6. Semiparametric estimation for space-time max-stable processes: an F-madogram-based approach. (2021). Maume-Deschamps, V ; Ribereau, P ; Abu-Awwad, A.
    In: Statistical Inference for Stochastic Processes.
    RePEc:spr:sistpr:v:24:y:2021:i:2:d:10.1007_s11203-020-09232-2.

    Full description at Econpapers || Download paper

  7. Fitting spatial max-mixture processes with unknown extremal dependence class: an exploratory analysis tool. (2020). Maume-Deschamps, V ; Ribereau, P ; Abu-Awwad, A.
    In: TEST: An Official Journal of the Spanish Society of Statistics and Operations Research.
    RePEc:spr:testjl:v:29:y:2020:i:2:d:10.1007_s11749-019-00663-5.

    Full description at Econpapers || Download paper

  8. New Exploratory Tools for Extremal Dependence: $$\chi $$ χ Networks and Annual Extremal Networks. (2019). Huang, Whitney K ; Chatterjee, Snigdhansu ; Ebert-Uphoff, Imme ; Cooley, Daniel S ; Chen, Chen.
    In: Journal of Agricultural, Biological and Environmental Statistics.
    RePEc:spr:jagbes:v:24:y:2019:i:3:d:10.1007_s13253-019-00356-4.

    Full description at Econpapers || Download paper

  9. On second order conditions in the multivariate block maxima and peak over threshold method. (2019). Volgushev, Stanislav ; Zou, Nan ; Bucher, Axel.
    In: Journal of Multivariate Analysis.
    RePEc:eee:jmvana:v:173:y:2019:i:c:p:604-619.

    Full description at Econpapers || Download paper

  10. Extremal dependence and spatial risk measures for insured losses due to extreme winds. (2019). Koch, Erwan.
    In: Papers.
    RePEc:arx:papers:1804.05694.

    Full description at Econpapers || Download paper

  11. Multidimensional extremal dependence coefficients. (2018). Ferreira, Marta.
    In: Statistics & Probability Letters.
    RePEc:eee:stapro:v:133:y:2018:i:c:p:1-8.

    Full description at Econpapers || Download paper

  12. Modelling across extremal dependence classes. (2017). Wadsworth, J L ; Tawn, J A ; Melton, D ; Davison, A C.
    In: Journal of the Royal Statistical Society Series B.
    RePEc:bla:jorssb:v:79:y:2017:i:1:p:149-175.

    Full description at Econpapers || Download paper

  13. Bayesian Clustering and Dimension Reduction in Multivariate Extremes. (2017). Vettori, Sabrina ; Huser, Raphael ; Genton, Marc ; Segers, Johan.
    In: LIDAM Discussion Papers ISBA.
    RePEc:aiz:louvad:2017017.

    Full description at Econpapers || Download paper

  14. Conditional independence among max-stable laws. (2016). Strokorb, Kirstin ; Papastathopoulos, Ioannis.
    In: Statistics & Probability Letters.
    RePEc:eee:stapro:v:108:y:2016:i:c:p:9-15.

    Full description at Econpapers || Download paper

  15. Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials. (2016). Padoan, Simone ; Muliere, Pietro ; Naveau, Philippe ; Segers, Johan ; Marcon, Giulia.
    In: LIDAM Discussion Papers ISBA.
    RePEc:aiz:louvad:2016020.

    Full description at Econpapers || Download paper

  16. Multivariate Tail Dependence in Financial Markets. (2014). Kim, Sungho.
    In: Working papers.
    RePEc:yon:wpaper:2014rwp-71.

    Full description at Econpapers || Download paper

  17. Extreme dependence models based on event magnitude. (2013). Padoan, Simone A..
    In: Journal of Multivariate Analysis.
    RePEc:eee:jmvana:v:122:y:2013:i:c:p:1-19.

    Full description at Econpapers || Download paper

  18. Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model. (2013). Tawn, Jonathan A. ; Papastathopoulos, Ioannis ; Keef, Caroline .
    In: Journal of Multivariate Analysis.
    RePEc:eee:jmvana:v:115:y:2013:i:c:p:396-404.

    Full description at Econpapers || Download paper

  19. Extreme events: dynamics, statistics and prediction. (2011). Hallegatte, Stephane ; Naveau, P ; Soloviev, A ; Friederichs, P ; Mestre, O ; Vrac, M ; Ghil, M ; Kossobokov, V ; Zaliapin, I ; Keilis-Borok, V ; Rust, H W ; Kondrashov, D ; Nicolis, C ; Yiou, P ; Malamud, B D ; Shebalin, P ; Witt, A.
    In: Post-Print.
    RePEc:hal:journl:hal-00716514.

    Full description at Econpapers || Download paper

  20. Dépendance entre risques extrêmes : Application aux Hedge Funds. (2010). Bouchouicha, Ranoua ; Furceri, Davide ; Zdzienicka, Aleksandra.
    In: Working Papers.
    RePEc:gat:wpaper:1013.

    Full description at Econpapers || Download paper

  21. GLUE Based Assessment on the Overall Predictions of a MIKE SHE Application. (2009). Vazquez, R. ; Beven, K. ; Feyen, J..
    In: Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA).
    RePEc:spr:waterr:v:23:y:2009:i:7:p:1325-1349.

    Full description at Econpapers || Download paper

  22. A new class of models for bivariate joint tails. (2009). Ledford, Anthony ; Ramos, Alexandra .
    In: Journal of the Royal Statistical Society Series B.
    RePEc:bla:jorssb:v:71:y:2009:i:1:p:219-241.

    Full description at Econpapers || Download paper

  23. Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution. (2001). Schlather, Martin.
    In: Statistics & Probability Letters.
    RePEc:eee:stapro:v:53:y:2001:i:3:p:325-329.

    Full description at Econpapers || Download paper

  24. New Extreme-Value Dependance Measures and Finance Applications. (2001). Rockinger, Michael ; Poon, Ser-Huang ; Tawn, Jonathan.
    In: HEC Research Papers Series.
    RePEc:ebg:heccah:0719.

    Full description at Econpapers || Download paper

  25. New Extreme-Value Dependence Measures and Finance Applications. (2001). Rockinger, Michael ; Poon, Ser-Huang ; Tawn, Jonathan.
    In: CEPR Discussion Papers.
    RePEc:cpr:ceprdp:2762.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-02 02:16:46 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.