- Alexander, M. A., Matrosova, L., Penland, C., Scott, J. D., & Chang, P. (2008). Forecasting pacific ssts: Linear inverse model predictions of the pdo. Journal of Climate, 21(2), 385–402.
Paper not yet in RePEc: Add citation now
- Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long‐term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166. https://doi.org/10.1109/72.279181.
Paper not yet in RePEc: Add citation now
- Berliner, L. M., Wikle, C. K., & Cressie, N. (2000). Long‐lead prediction of pacific ssts via bayesian dynamic modeling. Journal of Climate, 13(22), 3953–3968.
Paper not yet in RePEc: Add citation now
- Bonas, M., & Castruccio, S. (2023). Calibration of spatial forecasts from citizen science urban air pollution data with sparse recurrent neural networks. Annals of Applied Statistics, 17(3), 1820–1840.
Paper not yet in RePEc: Add citation now
- Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time series analysis: Forecasting and control. John Wiley & Sons, Inc.
Paper not yet in RePEc: Add citation now
- Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting. Springer.
Paper not yet in RePEc: Add citation now
- Cho, K., van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder–decoder approaches. In Proceedings of SSST‐8, eighth workshop on syntax, semantics and structure in statistical translation (pp. 103–111). Association for Computational Linguistics.
Paper not yet in RePEc: Add citation now
- Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the coupled model Intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958.
Paper not yet in RePEc: Add citation now
Gladish, D., & Wikle, C. (2014). Physically motivated scale interaction parameterization in reduced rank quadratic nonlinear dynamic spatio‐temporal models. Environmetrics, 25(4), 230–244.
Gneiting, T., Balabdaoui, F., & Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2), 243–268.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press http://www.deeplearningbook.org.
Paper not yet in RePEc: Add citation now
- Granger, C. W. J., & Joyeux, R. (1980). An introduction to long‐memory time series models and fractional differencing. Journal of Time Series Analysis, 1(1), 15–29.
Paper not yet in RePEc: Add citation now
- Graves, A. (2011). Practical variational inference for neural networks. In J. Shawe‐Taylor, R. Zemel, P. Bartlett, F. Pereira, & K. Q. Weinberger (Eds.), Advances in neural information processing systems (Vol. 24). Curran Associates, Inc.
Paper not yet in RePEc: Add citation now
- Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co‐adaptation of feature detectors. arXiv:1207.0580.
Paper not yet in RePEc: Add citation now
- Hochreiter, S., & Schmidhuber, J. (1997). Long short‐term memory. Neural Computation, 9(8), 1735–1780.
Paper not yet in RePEc: Add citation now
- Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68(1), 165–176.
Paper not yet in RePEc: Add citation now
- Huang, H., Castruccio, S., & Genton, M. G. (2022). Forecasting high‐frequency spatio‐temporal wind power with dimensionally reduced echo state networks. Journal of the Royal Statistical Society‐Series C, 2, 449–466.
Paper not yet in RePEc: Add citation now
- Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and practice. OTexts.
Paper not yet in RePEc: Add citation now
- Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent neural networks‐with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report. 148.
Paper not yet in RePEc: Add citation now
- Jaeger, H. (2007). Echo state network. Scholarpedia, 2(9), 2330.
Paper not yet in RePEc: Add citation now
- Karniadakis, G., Kevrekidis, I., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics‐informed machine learning. Nature Reviews Physics, 3, 422–440.
Paper not yet in RePEc: Add citation now
- Keenlyside, N. S., Ba, J., Mecking, J., Omrani, N.‐E., Latif, M., Zhang, R., & Msadek, R. (2015). North Atlantic multi‐decadal variability–Mechanisms and predictability. In C.‐P. Chang, M. Ghil, M. Latif, & J. M. Wallace (Eds.), Climate change: multidecadal and beyond (pp. 141–157). World Scientific.
Paper not yet in RePEc: Add citation now
- Knaff, J. A., & Landsea, C. W. (1997). An El Niño–southern oscillation climatology and persistence (CLIPER) forecasting scheme. Weather and Forecasting, 12(3), 633–652.
Paper not yet in RePEc: Add citation now
- Koenker, R. (2005). Econometric society monographs. In Quantile regression. Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Kolen, J. F., & Kremer, S. C. (2001). Neural network architectures for the modeling of dynamic systems (pp. 311–350). Wiley‐IEEE Press.
Paper not yet in RePEc: Add citation now
- Lukosevicius, M. (2012). A practical guide to applying echo state networks. In Neural networks: Tricks of the trade (pp. 659–686). Springer.
Paper not yet in RePEc: Add citation now
- Lukosevicius, M., & Jaeger, H. (2009). Reservoir computing approaches to recurrent neural network training. Computer Science Review, 3, 127–149.
Paper not yet in RePEc: Add citation now
- MacKay, D. J. C. (1992). A practical Bayesian framework for backpropagation networks. Neural Computation, 4(3), 448–472.
Paper not yet in RePEc: Add citation now
- Mantua, N., & Hare, S. (2002). The Pacific decadal oscillation. Journal of Oceanography, 58, 35–44.
Paper not yet in RePEc: Add citation now
- McDermott, P. L., & Wikle, C. K. (2017). An ensemble quadratic echo state network for non‐linear spatio‐temporal forecasting. Stat, 6(1), 315–330. https://doi.org/10.1002/sta4.160.
Paper not yet in RePEc: Add citation now
- McDermott, P. L., & Wikle, C. K. (2019a). Bayesian recurrent neural network models for forecasting and quantifying uncertainty in spatial‐temporal data. Entropy, 21(2), 184. https://doi.org/10.3390/e21020184.
Paper not yet in RePEc: Add citation now
McDermott, P. L., & Wikle, C. K. (2019b). Deep echo state networks with uncertainty quantification for spatio‐temporal forecasting. Environmetrics, 30(3), e2553.
- Mead, M. I., Castruccio, S., Latif, M. T., Nadzir, M. S. M., Dominick, D., Thota, A., & Crippa, P. (2018). Impact of the 2015 wildfires on malaysian air quality and exposure: A comparative study of observed and modeled data. Environmental Research Letters, 13(4), 044023.
Paper not yet in RePEc: Add citation now
- Misra, V., Marx, L., Kinter, J. L. I., Kirtman, B. P., Guo, Z., Min, D., Fennessy, M., Dirmeyer, P. A., Kallummal, R., & Straus, D. M. (2007). Validating and understanding the enso simulation in two coupled climate models. Tellus A: Dynamic Meteorology and Oceanography, 59(3), 292–308.
Paper not yet in RePEc: Add citation now
- Patil, K., Deo, M., Ghosh, S., & Ravichandran, M. (2013). Predicting sea surface temperatures in the north indian ocean with nonlinear autoregressive neural networks. International Journal of Oceanography, 2013, 302479.
Paper not yet in RePEc: Add citation now
- Penland, C., & Magorian, T. (1993). Prediction of niño 3 sea surface temperatures using linear inverse modeling. Journal of Climate, 6(6), 1067–1076.
Paper not yet in RePEc: Add citation now
- Penland, C., & Matrosova, L. (1998). Prediction of tropical Atlantic Sea surface temperatures using linear inverse modeling. Journal of Climate, 11(3), 483–496.
Paper not yet in RePEc: Add citation now
- Petrova, D., Ballester, J., Koopman, S. J., & Rodó, X. (2020). Multiyear statistical prediction of enso enhanced by the tropical pacific observing system. Journal of Climate, 33(1), 163–174.
Paper not yet in RePEc: Add citation now
- Philander, S. G. (1990). El Niño, La Niña, and the southern oscillation. Academic Press.
Paper not yet in RePEc: Add citation now
- Rabiner, L. (1989). A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286. https://doi.org/10.1109/5.18626.
Paper not yet in RePEc: Add citation now
- Schnabel, S. K., & Eilers, P. H. C. (2012). Simultaneous estimation of quantile curves using quantile sheets. AStA Advances in Statistical Analysis, 97(1), 77–87.
Paper not yet in RePEc: Add citation now
- Shiogama, H., Abe, M., & Tatebe, H. (2019). Miroc miroc6 model output prepared for cmip6 scenariomip ssp126. Earth System Grid Federation https://doi.org/10.22033/ESGF/CMIP6.5743.
Paper not yet in RePEc: Add citation now
van Vuuren, D., Edmonds, J., Kainuma, M., et al. (2011). The representative concentration pathways: An overview. Climatic Change, 109, 5.
- Vimont, D. J. (2005). The contribution of the interannual enso cycle to the spatial pattern of decadal enso‐like variability. Journal of Climate, 18(12), 2080–2092.
Paper not yet in RePEc: Add citation now
Wikle, C. K. (2019). Comparison of deep neural networks and deep hierarchical models for Spatio‐temporal data. Journal of Agricultural, Biological and Environmental Statistics, 24(2), 175–203.
Wikle, C. K., & Holan, S. H. (2011). Polynomial nonlinear spatio‐temporal integro‐difference equation models. Journal of Time Series Analysis, 32(4), 339–350.
Wikle, C., & Hooten, M. (2010). A general science‐based framework for dynamical spatio‐temporal models. Test, 19, 417–451.
- Zhou, B., Simon, J. S., & Chow, F. K. (2014). The convective boundary layer in the terra incognita. Journal of the Atmospheric Sciences, 71(7), 2545–2563.
Paper not yet in RePEc: Add citation now