Aatola, P., Ollikainen, M., & Toppinen, A. (2013). Impact of the carbon price on the integrating European electricity market. Energy Policy, 61, 1236–1251. https://doi.org/10.1016/j.enpol.2013.06.036.
Ahmad, W., Sadorsky, P., & Sharma, A. (2018). Optimal hedge ratios for clean energy equities. Economic Modelling, 72, 278–295. https://doi.org/10.1016/j.econmod.2018.02.008.
Ando, T., Greenwood‐Nimmo, M., & Shin, Y. (2022). Quantile connectedness: Modelling tail behaviour in the topology of financial networks. Management Science, 68(4), 2401–2431. https://doi.org/10.1287/mnsc.2021.3984.
- Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time‐varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84–107. https://doi.org/10.3390/jrfm13040084.
Paper not yet in RePEc: Add citation now
Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2021). The impact of euro through time: Exchange rate dynamics under different regimes. International Journal of Finance and Economics, 26, 1375–1408. https://doi.org/10.1002/ijfe.1854.
Balcilar, M., Demirer, R., Hammoudeh, S., et al. (2016). Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk. Energy Economics, 54, 159–172. https://doi.org/10.1016/j.eneco.2015.11.003.
Barunik, J., & Krehlik, T. (2018). Measuring the frequency dynamics of financial connectedness and systemic risk. Journal of Financial Econometrics, 16(2), 271–296. https://doi.org/10.1093/jjfinec/nby001.
Bouri, E., Kanjilal, K., Ghosh, S., Roubaud, D., & Saeed, T. (2021). Rare earth and allied sectors in stock markets: Extreme dependence of return and volatility. Applied Economics, 53(49), 5710–5730. https://doi.org/10.1080/00036846.2021.1927971.
Bouri, E., Saeed, T., Xuan, V. V., Vo, X. V., & Roubaud, D. (2021). Quantile connectedness in the cryptocurrency market. Journal of International Financial Markets I., 71, 101302. https://doi.org/10.1016/j.intfin.2021.101302.
- Broadstock, D. C., Chatziantoniou, I., & Gabauer, D. (2022). Minimum connectedness portfolios and the market for green bonds:Advocating socially responsible investment (SRI) activity. In Christos F. & Ioannis C. (Eds.), Applications in Energy Finance (pp. 217–253). Palgrave Macmillan. https://doi.org/10.1007/978-3-030-92957-2_9.
Paper not yet in RePEc: Add citation now
- Chan‐Lau, J. A. (2017). Variance decomposition networks: Potential pitfalls and a simple solution. IMF Working Paper No. 17/107. https://ssrn.com/abstract=3053190.
Paper not yet in RePEc: Add citation now
Chatziantoniou, I., Gabauer, D., & Stenfors, A. (2021). Interest rate swaps and the transmission mechanism of monetary policy: A quantile connectedness approach. Economics Letters, 204, 109891. https://doi.org/10.1016/j.econlet.2021.109891.
Christoffersen, P., Errunza, V., Jacobs, K., & Jin, X. (2014). Correlation dynamics and international diversification benefits. International Journal of Forecasting, 30(3), 807–824. https://doi.org/10.1016/j.ijforecast.2014.01.001.
Creti, A., Jouvet, P. A., & Mignon, V. (2012). Carbon price drivers: Phase I versus phase II equilibrium? Energy Economics, 34(1), 327–334. https://doi.org/10.1016/j.eneco.2011.11.001.
Demiralay, S., Gencer, H. G., & Bayraci, S. (2022). Carbon credit futures as an emerging asset: Hedging, diversification and downside risks. Energy Economics, 113, 106196. https://doi.org/10.1016/j.eneco.2022.106196.
Demirer, M., Diebold, F. X., Liu, L., & Yilmaz, K. (2018). Estimating global Bank network connectedness. Journal of Applied Econometrics, 33, 1–15. https://doi.org/10.1002/jae.2585.
- Dhamija, A. K., Yadav, S. S., & Jain, P. K. (2018). Volatility spillover of Ene‐rgy markets into EUA markets under EU ETS: A multi‐phase study. Environmental Economics and Policy Studies, 20(3), 561–591. https://doi.org/10.1007/s10018-017-0206-5.
Paper not yet in RePEc: Add citation now
Diebold, F. X., & Yılmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Econometrics Journal, 119(534), 158–171. https://doi.org/10.1111/j.1468-0297.2008.02208.x.
Diebold, F. X., & Yılmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57–66. https://doi.org/10.1016/j.ijforecast.2011.02.006.
Diebold, F. X., & Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119–134. https://doi.org/10.1016/j.jeconom.2014.04.012.
Dutta, A., Bouri, E., & Noor, M. H. (2018). Return and volatility linkages between CO2 emission and clean energy stock prices. Energy, 164, 803–810. https://doi.org/10.1016/j.energy.2018.09.055.
Ederington, L. H. (1979). The hedging performance of the new futures markets. The Journal of Finance, 34, 157–170. https://doi.org/10.1111/j.1540-6261.1979.tb02077.x.
Fisher, T. J., & Gallagher, C. M. (2012). New weighted portmanteau statistics for time series goodness of fit testing. Journal of the American Statistical Association, 107(498), 777–787. https://doi.org/10.1080/01621459.2012.688465.
Fuentes, F., & Herrera, R. (2020). Dynamics of connectedness in clean energy stocks. Energies, 13, 3705. https://doi.org/10.3390/en13143705.
Gabauer, D. (2020). Volatility impulse response analysis for DCC‐GARCH models: The role of volatility transmission mechanisms. Journal of Forecasting, 39, 788–796. https://doi.org/10.1002/for.2648.
Hanif, W., Hernandez, J. A., Mensi, W., et al. (2021). Nonlinear dependence and connectedness between clean/renewable energy sector equity and European emission allowance prices. Energy Economics, 101, 105409. https://doi.org/10.1016/j.eneco.2021.105409.
- Iqbal, N., Bouri, E., Grebievych, O., et al. (2022). Modelling extreme risk spillovers in the commodity markets around crisis periods including COVID19. Ann. Oper. Res., [published online]. https://doi.org/10.1007/s10479-022-04522-9.
Paper not yet in RePEc: Add citation now
Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3), 255–259. https://doi.org/10.1016/0165-1765(80)90024-5.
- Ji, Q., Zhang, D. Y., & Geng, J. B. (2018). Information linkage, dynamic spillovers in prices and volatility between the carbon and energy markets. Journal of Cleaner Production, 198, 972–978. https://doi.org/10.1016/j.jclepro.2018.07.126.
Paper not yet in RePEc: Add citation now
- KocÄenda, E., & Moravcová, M. (2019). Exchange rate comovements, hedging and volatility spillovers on new EU forex markets. Journal of International Financial Markets I., 58, 42–64. https://doi.org/10.1016/j.intfin.2018.09.009.
Paper not yet in RePEc: Add citation now
Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46(1), 33–50. https://doi.org/10.2307/1913643.
Kroner, K. F., & Sultan, J. (1993). Time‐varying distributions and dynamic hedging with foreign currency futures. Journal of Financial and Quantitative Analysis, 28, 535–551. https://doi.org/10.2307/2331164.
Kroner, K., & Ng, V. (1998). Modeling asymmetric comovements of asset returns. Review of Financial Studies, 11, 817–844. https://doi.org/10.1093/rfs/11.4.817.
Kuang, W. (2021). Which clean energy sectors are attractive? A portfolio diversification perspective. Energy Economics, 104, 105644. https://doi.org/10.1016/j.eneco.2021.105644.
Lastrapes, W. D., & Wiesen, T. F. (2021). The joint spillover index. Economic Modelling, 94, 681–691. https://doi.org/10.1016/j.econmod.2020.02.010.
Liu, Z. H., Shi, X. P., Zhai, P. X., et al. (2021). Tail risk connectedness in the oil‐stock nexus: Evidence from a novel quantile spillover approach. Resources Policy, 74, 102381. https://doi.org/10.1016/j.resourpol.2021.102381.
- Londono, J. M. (2019). Bad bad contagion. Journal of Banking & Finance, 108, 105652. https://doi.org/10.1016/j.jbankfin.2019.105652.
Paper not yet in RePEc: Add citation now
- Markovitz, H. (1959). Portfolio selection: Efficient diversification of investments. John Wiley.
Paper not yet in RePEc: Add citation now
- Mehmet, B., David, G., & Zaghum, U. (2021). Crude oil futures contracts and commodity markets, new evidence from a TVP‐VAR extended joint connectedness approach. Resources Policy, 73, 102219. https://doi.org/10.1016/j.resourpol.2021.102219.
Paper not yet in RePEc: Add citation now
Pham, L. (2019). Do all clean energy stocks respond homogeneously to oil price? Energy Economics, 81, 355–379. https://doi.org/10.1016/j.eneco.2019.04.010.
Saeed, T., Bouri, E., & Alsulami, H. (2021). Extreme return connectedness and its determinants between clean/green and dirty energy investments. Energy Economics, 96, 105017. https://doi.org/10.1016/j.eneco.2020.105017.
Shahzad, S. J. H., Bouri, E., Kristoufek, L., & Saeed, T. (2021). Impact of the COVID‐19 outbreak on the US equity sectors: Evidence from quantile return spillovers. Financ. Innov., 7(14), 1–23. https://doi.org/10.1186/s40854-021-00228-2.
- Sharpe, W. F. (1966). Mutual fund performance. Journal of Business, 39(1), 119–138. https://doi.org/10.1086/294846.
Paper not yet in RePEc: Add citation now
- Song, N., Li, Z., & Zeng, S. (2015). Volatility information transmission between carbon marketand global asset market. Resources Science, 37(6), 1258–1265. http://www.resci.cn/CN/Y2015/V37/I6/1258.
Paper not yet in RePEc: Add citation now
Stock, J., Elliott, G., & Rothenberg, T. (1996). Efficient tests for an autoregressive unit root. Econometrica, 64(4), 813–836. https://doi.org/10.3386/t0130.
Su, X. (2020). Measuring extreme risk spillovers across international stock markets: A quantile variance decomposition analysis. North American Journal of Economics and Finance, 51, 101098. https://doi.org/10.1016/j.najef.2019.101098.
Tan, X., Sirichand, K., Vivian, A., & Wang, X. (2020). How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics. Energy Economics, 90, 104870. https://doi.org/10.1016/j.eneco.2020.104870.
Tiwari, A. K., Abakah, E. J. A., Gabauer, D., & Dwumfour, R. A. (2022). Dynamic spillover effects among green bond, renewable energy stocks and carbon markets during COVID‐19 pandemic: Implications for hedging and investments strategies. Global Finance Journal, 51, 100692. https://doi.org/10.1016/j.gfj.2021.100692.
Uddin, G. S., Hernandez, J. A., Shahzad, S. J. H., & Hedström, A. (2018). Multivariate dependence and spillover effects across energy commodities and diversification potentials of carbon assets. Energy Economics, 71, 35–46. https://doi.org/10.1016/j.eneco.2018.01.035.
- Wang, C., & Yang, B. (2021). An analysis concerning the spillover effects of carbon Marketson commodity and financial markets. Journal (Philosophy, Literature and Social Science), 5, 110–122. http://jss.nankai.edu.cn/CN/Y2021/V283/I5/110.
Paper not yet in RePEc: Add citation now
- Wang, X., Qiao, Q., & Chen, X. (2021). Study on the dynamic dependence between carbon emission trading market and new energy market: A case study of China's Carbom market pilot. Journal of China University of Mining and Technology, 23(6), 89–106. https://doi.org/10.3969/j.issn.1009-105x.2021.06.008.
Paper not yet in RePEc: Add citation now
- Wang, Y. D., & Guo, Z. Y. (2018). The dynamic spillover between carbon and energy markets: New evidence. Energy, 149, 24–33. https://doi.org/10.1016/j.energy.2018.01.145.
Paper not yet in RePEc: Add citation now
- Wu, Q., Wang, M. G., & Tian, L. X. (2020). The market‐linkage of the volatility spillover between traditional energy price and carbon price on the realization of carbon value of emission reduction behavior. Journal of Cleaner Production, 245, 118682. https://doi.org/10.1016/j.jclepro.2019.118682.
Paper not yet in RePEc: Add citation now
- Zhao, L., Fan, C., & Wang, H. (2021). The time‐varying spillover effects between China's carbon markets and energy market—An empirical study based on spillover index model. Journal of Beijing Institute of Technology (Social Science Edition), 23(1), 28–40. https://doi.org/10.15918/j.jbitss1009-3370.2021.4972.
Paper not yet in RePEc: Add citation now