- Al Bataineh, A., & Kaur, D. (2018). A comparative study of different curve fitting algorithms in artificial neural network using housing dataset, in: NAECON 2018‐IEEE National Aerospace and Electronics Conference, IEEE. pp. 174–178. https://doi.org/10.1109/NAECON.2018.8556738.
Paper not yet in RePEc: Add citation now
- Ali, M., Deo, R. C., Downs, N. J., & Maraseni, T. (2018). Cotton yield prediction with markov chain monte carlo‐based simulation model integrated with genetic programing algorithm: a new hybrid copula‐driven approach. Agricultural and Forest Meteorology, 263, 428–448. https://doi.org/10.1016/j.agrformet.2018.09.002.
Paper not yet in RePEc: Add citation now
- Altan, A., Karasu, S., & Zio, E. (2021). A new hybrid model for wind speed forecasting combining long short‐term memory neural network, decomposition methods and grey wolf optimizer. Applied Soft Computing, 100, 106996. https://doi.org/10.1016/j.asoc.2020.106996.
Paper not yet in RePEc: Add citation now
Ayankoya, K., Calitz, A. P., & Greyling, J. H. (2016). Real‐time grain commodities price predictions in south africa: a big data and neural networks approach. Agrekon, 55, 483–508. https://doi.org/10.1080/03031853.2016.1243060.
- Baghirli, O. (2015). Comparison of lavenberg‐marquardt, scaled conjugate gradient and bayesian regularization backpropagation algorithms for multistep ahead wind speed forecasting using multilayer perceptron feedforward neural network.
Paper not yet in RePEc: Add citation now
- Banga, J. S., & Brorsen, B. W. (2019). Profitability of alternative methods of combining the signals from technical trading systems. Intelligent Systems in Accounting, Finance and Management, 26, 32–45. https://doi.org/10.1002/isaf.1442.
Paper not yet in RePEc: Add citation now
- Batra, D. (2014). Comparison between levenberg‐marquardt and scaled conjugate gradient training algorithms for image compression using mlp. International Journal of Image Processing (IJIP), 8, 412–422.
Paper not yet in RePEc: Add citation now
- Bayona‐Oré, S., Cerna, R., & Hinojoza, E. T. (2021). Machine learning for price prediction for agricultural products. WSEAS Transactions on Business and Economics, 18, 969–977. https://doi.org/10.37394/23207.2021.18.92.
Paper not yet in RePEc: Add citation now
- Behall, K., & Hallfrisch, J. (2011). Oats as a functional food for health. In Oats: chemistry and technology (pp. 255–273). Cereals & Grains Association. https://doi.org/10.1094/9781891127649.012.
Paper not yet in RePEc: Add citation now
- Bergmeir, C., & Benítez, J. M. (2012). On the use of cross‐validation for time series predictor evaluation. Information Sciences, 191, 192–213. https://doi.org/10.1016/j.ins.2011.12.028.
Paper not yet in RePEc: Add citation now
Bessler, D. A., & Wang, Z. (2012). D‐separation, forecasting, and economic science: a conjecture. Theory and Decision, 73, 295–314. https://doi.org/10.1007/s11238-012-9305-8.
Bessler, D. A., Yang, J., & Wongcharupan, M. (2003). Price dynamics in the international wheat market: modeling with error correction and directed acyclic graphs. Journal of Regional Science, 43, 1–33. https://doi.org/10.1111/1467-9787.00287.
- Blake, A., & Kapetanios, G. (1999). Forecast combination and leading indicators: combining artificial neural network and autoregressive forecasts. Manuscript, National Institute of Economic and Social Research.
Paper not yet in RePEc: Add citation now
- Brandt, J. A., & Bessler, D. A. (1983). Price forecasting and evaluation: An application in agriculture. Journal of Forecasting, 2, 237–248. https://doi.org/10.1002/for.3980020306.
Paper not yet in RePEc: Add citation now
- Brock, W. A., Scheinkman, J. A., Dechert, W. D., & LeBaron, B. (1996). A test for independence based on the correlation dimension. Econometric Reviews, 15, 197–235. https://doi.org/10.1080/07474939608800353.
Paper not yet in RePEc: Add citation now
Davis, J. T., Episcopos, A., & Wettimuny, S. (2001). Predicting direction shifts on canadian–us exchange rates with artificial neural networks. Intelligent Systems in Accounting, Finance & Management, 10, 83–96. https://doi.org/10.1002/isaf.200.
- Dergiades, T., Martinopoulos, G., & Tsoulfidis, L. (2013). Energy consumption and economic growth: Parametric and non‐parametric causality testing for the case of greece. Energy Economics, 36, 686–697. https://doi.org/10.1016/j.eneco.2012.11.017.
Paper not yet in RePEc: Add citation now
- Dias, J., & Rocha, H. (2019). Forecasting wheat prices based on past behavior: comparison of different modelling approaches. In International Conference on Computational Science and Its Applications (pp. 167–182). Springer. https://doi.org/10.1007/978-3-030-24302-9_13.
Paper not yet in RePEc: Add citation now
Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13, 253–263. https://doi.org/10.2307/1392185.
- Doan, C. D., & Liong, S. Y. (2004). Generalization for multilayer neural network bayesian regularization or early stopping, in: Proceedings of Asia Pacific Association of Hydrology and Water Resources 2nd Conference, pp. 5–8.
Paper not yet in RePEc: Add citation now
- Donaldson, R. G., & Kamstra, M. (1996). Forecast combining with neural networks. Journal of Forecasting, 15, 49–61. https://doi.org/10.1002/(SICI)1099-131X(199601)15:1<49::AID-FOR604>3.0.CO;2-2.
Paper not yet in RePEc: Add citation now
- Dunis, C. L., Laws, J., Middleton, P. W., & Karathanasopoulos, A. (2013). Nonlinear forecasting of the gold miner spread: An application of correlation filters. Intelligent Systems in Accounting, Finance and Management, 20, 207–231. https://doi.org/10.1002/isaf.1345.
Paper not yet in RePEc: Add citation now
- Fadlalla, A., & Amani, F. (2014). Predicting next trading day closing price of qatar exchange index using technical indicators and artificial neural networks. Intelligent Systems in Accounting, Finance and Management, 21, 209–223. https://doi.org/10.1002/isaf.1358.
Paper not yet in RePEc: Add citation now
Fang, Y., Guan, B., Wu, S., & Heravi, S. (2020). Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices. Journal of Forecasting, 39, 877–886. https://doi.org/10.1002/for.2665.
Fujihara, R. A., & Mougoué, M. (1997). An examination of linear and nonlinear causal relationships between price variability and volume in petroleum futures markets. Johttps://brunswickjfc.org.au/shop/urnal of Futures Markets: Futures, Options, and Other Derivative Products, 17, 385–416. https://doi.org/10.1002/(SICI)1096-9934(199706)17:4<385::AID-FUT2>3.0.CO;2-D.
- George, J., Nair, A. M., & Yathish, S. (2022). Analysis of market behavior using popular digital design technical indicators and neural network. In Expert Clouds and Applications (pp. 445–458). Springer. https://doi.org/10.1007/978-981-16-2126-0_37.
Paper not yet in RePEc: Add citation now
- Gómez, D., Salvador, P., Sanz, J., & Casanova, J. L. (2021). Modelling wheat yield with antecedent information, satellite and climate data using machine learning methods in mexico. Agricultural and Forest Meteorology, 300, 108317. https://doi.org/10.1016/j.agrformet.2020.108317.
Paper not yet in RePEc: Add citation now
- Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the marquardt algorithm. IEEE Transactions on Neural Networks, 5, 989–993. https://doi.org/10.1109/72.329697.
Paper not yet in RePEc: Add citation now
- Harris, J. J. (2017). A machine learning approach to forecasting consumer food prices.
Paper not yet in RePEc: Add citation now
Harvey, D., Leybourne, S., & Newbold, P. (1997). Testing the equality of prediction mean squared errors. International Journal of Forecasting, 13, 281–291. https://doi.org/10.1016/S0169-2070(96)00719-4.
- Kano, Y., & Shimizu, S. (2003). Causal inference using nonnormality, in: Proceedings of the international symposium on science of modeling, the 30th anniversary of the information criterion, pp. 261–270.
Paper not yet in RePEc: Add citation now
Karasu, S., Altan, A., Bekiros, S., & Ahmad, W. (2020). A new forecasting model with wrapper‐based feature selection approach using multi‐objective optimization technique for chaotic crude oil time series. Energy, 212, 118750. https://doi.org/10.1016/j.energy.2020.118750.
- Kayri, M. (2016). Predictive abilities of bayesian regularization and levenberg–marquardt algorithms in artificial neural networks: a comparative empirical study on social data. Mathematical and Computational Applications, 21, 20. https://doi.org/10.3390/mca21020020.
Paper not yet in RePEc: Add citation now
- Khan, T. A., Alam, M., Shahid, Z., & Mazliham, M. (2019). Comparative performance analysis of levenberg‐marquardt, bayesian regularization and scaled conjugate gradient for the prediction of flash floods. Journal of Information Communication Technologies and Robotic Applications, 10, 52–58.
Paper not yet in RePEc: Add citation now
- Khedr, A. M., Arif, I., el‐Bannany, M., Alhashmi, S. M., & Sreedharan, M. (2021). Cryptocurrency price prediction using traditional statistical and machine‐learning techniques: A survey. Intelligent Systems in Accounting, Finance and Management, 28, 3–34. https://doi.org/10.1002/isaf.1488.
Paper not yet in RePEc: Add citation now
- Klaussen, K., & Uhrig, J. W. (1994). Cash soybean price prediction with neural networks, in: NCR‐134 Conference on Applied Commodity Analysis, Price Forecasting and Market Risk Management Proceedings, pp. 56–65. https://legacy.farmdoc.illinois.edu/nccc134/conf_1994/pdf/confp6-94.pdf.
Paper not yet in RePEc: Add citation now
- Kohara, K., Ishikawa, T., Fukuhara, Y., & Nakamura, Y. (1997). Stock price prediction using prior knowledge and neural networks. Intelligent Systems in Accounting, Finance & Management, 6, 11–22. https://doi.org/10.1002/(SICI)1099-1174(199703)6:1<11::AID-ISAF115>3.0.CO;2-3.
Paper not yet in RePEc: Add citation now
- Kouadio, L., Deo, R. C., Byrareddy, V., Adamowski, J. F., Mushtaq, S., & Phuong Nguyen, V. (2018). Artificial intelligence approach for the prediction of robusta coffee yield using soil fertility properties. Computers and Electronics in Agriculture, 155, 324–338. https://doi.org/10.1016/j.compag.2018.10.014.
Paper not yet in RePEc: Add citation now
- Leung, M. T., Chen, A. S., & Mancha, R. (2009). Making trading decisions for financial‐engineered derivatives: a novel ensemble of neural networks using information content. Intelligent Systems in Accounting, Finance & Management: International Journal, 16, 257–277. https://doi.org/10.1002/isaf.308.
Paper not yet in RePEc: Add citation now
- Levenberg, K. (1944). A method for the solution of certain non‐linear problems in least squares. Quarterly of Applied Mathematics, 2, 164–168. https://doi.org/10.1090/qam/10666.
Paper not yet in RePEc: Add citation now
- Li, G., Chen, W., Li, D., Wang, D., & Xu, S. (2020). Comparative study of short‐term forecasting methods for soybean oil futures based on lstm, svr, es and wavelet transformation. Journal of Physics: Conference Series, IOP Publishing, 1682, 012007. https://doi.org/10.1088/1742-6596/1682/1/012007.
Paper not yet in RePEc: Add citation now
- Li, J., Li, G., Liu, M., Zhu, X., & Wei, L. (2020). A novel text‐based framework for forecasting agricultural futures using massive online news headlines. International Journal of Forecasting, 38, 35–50. https://doi.org/10.1016/j.ijforecast.2020.02.002.
Paper not yet in RePEc: Add citation now
Ma, C. K., Dare, W. H., & Donaldson, D. R. (1990). Testing rationality in futures markets. The Journal of Futures Markets (1986‐1998), 10, 137–152. https://doi.org/10.1002/fut.3990100205.
Maples, J. G., & Brorsen, B. W. (2022). Handling the discontinuity in futures prices when time series modeling of commodity cash and futures prices. Canadian Journal of Agricultural Economics/Revue Canadienne d'agroeconomie, 70, 139–152. https://doi.org/10.1111/cjag.12306.
- Marquardt, D. W. (1963). An algorithm for least‐squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11, 431–441. https://doi.org/10.1137/0111030.
Paper not yet in RePEc: Add citation now
- Moody, J., Wu, L., Liao, Y., & Saffell, M. (1998). Performance functions and reinforcement learning for trading systems and portfolios. Journal of Forecasting, 17, 441–470. https://doi.org/10.1002/(SICI)1099-131X(1998090)17:5/6<441::AID-FOR707>3.0.CO;2-\#.
Paper not yet in RePEc: Add citation now
- Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6, 525–533. https://doi.org/10.1016/S0893-6080(05)80056-5.
Paper not yet in RePEc: Add citation now
- Paluszek, M., & Thomas, S. (2020). Practical MATLAB Deep Learning: A Project‐Based Approach. Apress. https://doi.org/10.1007/978-1-4842-5124-9.
Paper not yet in RePEc: Add citation now
Park, C. H., & Irwin, S. H. (2007). What do we know about the profitability of technical analysis? Journal of Economic Surveys, 21, 786–826. https://doi.org/10.1111/j.1467-6419.2007.00519.x.
Park, C. H., & Irwin, S. H. (2010). A reality check on technical trading rule profits in the us futures markets. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 30, 633–659. https://doi.org/10.1002/fut.20435.
- Park, C. H., & Irwin, S. H. (2011). The profitability of technical analysis in commodity markets. In The Handbook of Commodity Investing (pp. 907–947). John Wiley and Sons. https://doi.org/10.1002/9781118267004.ch40.
Paper not yet in RePEc: Add citation now
- Parot, A., Michell, K., & Kristjanpoller, W. D. (2019). Using artificial neural networks to forecast exchange rate, including var‐vecm residual analysis and prediction linear combination. Intelligent Systems in Accounting, Finance and Management, 26, 3–15. https://doi.org/10.1002/isaf.1440.
Paper not yet in RePEc: Add citation now
- Quek, C., Yow, K. C., Cheng, P. Y., & Tan, C. (2009). Investment portfolio balancing: application of a generic self‐organizing fuzzy neural network (gensofnn). Intelligent Systems in Accounting, Finance & Management: International Journal, 16, 147–164. https://doi.org/10.1002/isaf.298.
Paper not yet in RePEc: Add citation now
- R L, M., & Mishra, A. K. (2021). Forecasting spot prices of agricultural commodities in india: Application of deep‐learning models. Intelligent Systems in Accounting, Finance and Management, 28, 72–83. https://doi.org/10.1002/isaf.1487.
Paper not yet in RePEc: Add citation now
- Ribeiro, C. O., & Oliveira, S. M. (2011). A hybrid commodity price‐forecasting model applied to the sugar–alcohol sector. Australian Journal of Agricultural and Resource Economics, 55, 180–198. https://doi.org/10.1111/j.1467-8489.2011.00534.x.
Paper not yet in RePEc: Add citation now
- Ribeiro, M. H. D. M., & dos Santos Coelho, L. (2020). Ensemble approach based on bagging, boosting and stacking for short‐term prediction in agribusiness time series. Applied Soft Computing, 86, 105837. https://doi.org/10.1016/j.asoc.2019.105837.
Paper not yet in RePEc: Add citation now
Selvamuthu, D., Kumar, V., & Mishra, A. (2019). Indian stock market prediction using artificial neural networks on tick data. Financial Innovation, 5, 1–12. https://doi.org/10.1186/s40854-019-0131-7.
- Shimizu, S., & Kano, Y. (2008). Use of non‐normality in structural equation modeling: Application to direction of causation. Journal of Statistical Planning and Inference, 138, 3483–3491. https://doi.org/10.1016/j.jspi.2006.01.017.
Paper not yet in RePEc: Add citation now
- Shimizu, S., Hoyer, P. O., Hyvärinen, A., Kerminen, A., & Jordan, M. (2006). A linear non‐gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7, 2003–2030.
Paper not yet in RePEc: Add citation now
- Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P. O., & Bollen, K. (2011). Directlingam: A direct method for learning a linear non‐gaussian structural equation model. The Journal of Machine Learning Research, 12, 1225–1248.
Paper not yet in RePEc: Add citation now
- StevensAnalytics. (2022). Continuous futures (date of access: 04/10/2022). https://data.nasdaq.com/databases/SCF/documentation.
Paper not yet in RePEc: Add citation now
Stock, J. H., & Watson, M. W. (1998). A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series. Technical Report. National Bureau of Economic Research. https://doi.org/10.3386/w6607.
Timmermann, A. (2006). Forecast combinations. In Handbook of Economic Forecasting (Vol. 1, pp. 135–196). Elsevier. https://doi.org/10.1016/S1574-0706(05)01004-9.
- Trinkle, B. S. (2005). Forecasting annual excess stock returns via an adaptive network‐based fuzzy inference system. Intelligent Systems in Accounting, Finance & Management: International Journal, 13, 165–177. https://doi.org/10.1002/isaf.264.
Paper not yet in RePEc: Add citation now
- USDA. (2021a). Coffee: World markets and trade. https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf.
Paper not yet in RePEc: Add citation now
- USDA. (2021b). Corn & other feedgrains. https://www.ers.usda.gov/topics/crops/corn-and-other-feedgrains/.
Paper not yet in RePEc: Add citation now
- USDA. (2021d). Soybeans & oil crops. https://www.ers.usda.gov/topics/crops/soybeans-oil-crops/.
Paper not yet in RePEc: Add citation now
- USDA. (2021e). Sugar: World markets and trade. https://apps.fas.usda.gov/psdonline/circulars/sugar.pdf.
Paper not yet in RePEc: Add citation now
Vojinovic, Z., Kecman, V., & Seidel, R. (2001). A data mining approach to financial time series modelling and forecasting. Intelligent Systems in Accounting, Finance & Management, 10, 225–239. https://doi.org/10.1002/isaf.207.
- Wang, D., Yue, C., Wei, S., & Lv, J. (2017). Performance analysis of four decomposition‐ensemble models for one‐day‐ahead agricultural commodity futures price forecasting. Algorithms, 10, 108. https://doi.org/10.3390/a10030108.
Paper not yet in RePEc: Add citation now
Wang, T., & Yang, J. (2010). Nonlinearity and intraday efficiency tests on energy futures markets. Energy Economics, 32, 496–503. https://doi.org/10.1016/j.eneco.2009.08.001.
Wegener, C., von Spreckelsen, C., Basse, T., & von Mettenheim, H. J. (2016). Forecasting government bond yields with neural networks considering cointegration. Journal of Forecasting, 35, 86–92. https://doi.org/10.1002/for.2385.
Xu, X. (2020). Corn cash price forecasting. American Journal of Agricultural Economics, 102, 1297–1320. https://doi.org/10.1002/ajae.12041.
- Xu, X., & Zhang, Y. (2021). Corn cash price forecasting with neural networks. Computers and Electronics in Agriculture, 184, 106120. https://doi.org/10.1016/j.compag.2021.106120.
Paper not yet in RePEc: Add citation now
Yang, J., Cabrera, J., & Wang, T. (2010). Nonlinearity, data‐snooping, and stock index etf return predictability. European Journal of Operational Research, 200, 498–507. https://doi.org/10.1016/j.ejor.2009.01.009.
Yang, J., Li, Z., & Wang, T. (2021). Price discovery in chinese agricultural futures markets: A comprehensive look. Journal of Futures Markets, 41, 536–555. https://doi.org/10.1002/fut.22179.
Yang, J., Su, X., & Kolari, J. W. (2008). Do euro exchange rates follow a martingale? some out‐of‐sample evidence. Journal of Banking & Finance, 32, 729–740. https://doi.org/10.1016/j.jbankfin.2007.05.009.
- Zarkias, K. S., Passalis, N., Tsantekidis, A., & Tefas, A. (2019). Deep reinforcement learning for financial trading using price trailing. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3067–3071). IEEE. https://doi.org/10.1109/ICASSP.
Paper not yet in RePEc: Add citation now
- Zhang, X. (1994). Non‐linear predictive models for intra‐day foreign exchange trading. Intelligent Systems in Accounting, Finance and Management, 3, 293–302. https://doi.org/10.1002/j.1099-1174.1994.tb00072.x.
Paper not yet in RePEc: Add citation now