- Alfaro, E., Garcia, N., Gamez, M., & Elizondo, D. (2008). Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks. Decision Support Systems, 45, 110–122. https://doi.org/10.1016/j.dss.2007.12.002.
Paper not yet in RePEc: Add citation now
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23, 589–609. https://doi.org/10.2307/2978933.
- Altman, E., Drozdowska, M. I., Laitinen, E., & Suvas, A. (2015). Financial and nonfinancial variables as long‐horizon predictors of bankruptcy. Journal of Credit Risk, 12(4), 49–78. https://doi.org/10.2139/ssrn.2669668.
Paper not yet in RePEc: Add citation now
- Anagnostopoulos, I., & Rizeq, A. (2021). Conventional and neural network target‐matching methods dynamics: The information technology mergers and acquisitions market in the USA. Intelligent Systems in Accounting, Finance and Management, 28(2), 97–118. https://doi.org/10.1002/isaf.1492.
Paper not yet in RePEc: Add citation now
- Angenent, M. N., Barata, A. P., & Takes, F. W. (2020). Large‐scale machine learning for business sector prediction. In SAC '20: Proceedings of the 35th annual ACM symposium on applied computing (pp. 1143–1146). Association for Computing Machinery.
Paper not yet in RePEc: Add citation now
- Antunes, F., Ribeiro, B., & Pereira, F. (2017). Probabilistic modeling and visualization for bankruptcy prediction. Applied Soft Computing, 60, 831–843. https://doi.org/10.1016/j.asoc.2017.06.043.
Paper not yet in RePEc: Add citation now
Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71–111. https://doi.org/10.2307/2490171.
- Bermingham, M. L., Pong‐Wong, R., Spiliopoulou, A., Hayward, C., Rudan, I., Campbell, H., Wright, A. F., Wilson, J. F., Agakov, F., Navarro, P., & Haley, C. S. (2015). Application of high‐dimensional feature selection: evaluation for genomic prediction in man. Scientific Reports, 5, 10312. https://doi.org/10.1038/srep10312.
Paper not yet in RePEc: Add citation now
- Boughaci, D., & Alkhawaldeh, A. A. (2020). Appropriate machine learning techniques for credit scoring and bankruptcy prediction in banking and finance: A comparative study. Risk Decision Analysis, 8, 15–24. https://doi.org/10.3233/RDA-180051.
Paper not yet in RePEc: Add citation now
Brédart, X., Séverin, E., & Veganzones, D. (2021). Human resources and corporate failure prediction modeling: Evidence from Belgium. Journal of Forecasting, 40, 1325–1341. https://doi.org/10.1002/for.2770.
- Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth International Group.
Paper not yet in RePEc: Add citation now
- Callejón, A. M., Casado, A. M., Fernández, M. A., & Paláez, J. I. (2013). A system of insolvency prediction for industrial companies using a financial alternative model with neural networks. International Journal of Computational Intelligence Systems, 6(1), 29–37. https://doi.org/10.1080/18756891.2013.754167.
Paper not yet in RePEc: Add citation now
Canbas, S., Cabuk, A., & Kilic, S. B. (2005). Prediction of commercial bank failure via multivariate statistical analysis of financial structures: The Turkish case. European Journal of Operational Research, 166(2), 528–546. https://doi.org/10.1016/j.ejor.2004.03.023.
- Cenciarelli, V. G., Greco, G., & Allegrini, M. (2018). Does intellectual capital help predict bankruptcy? Journal of Intellectual Capital, 19, 321–337. https://doi.org/10.1108/JIC-03-2017-0047.
Paper not yet in RePEc: Add citation now
- Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Editorial: Special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1), 1–6. https://doi.org/10.1145/1007730.1007733.
Paper not yet in RePEc: Add citation now
Ciampi, F., Giannozzi, A., Marzi, G., & Altman, E. I. (2021). Rethinking SME default prediction: A systematic literature review and future perspectives. Scientometrics, 126, 2141–2188. https://doi.org/10.1007/s11192-020-03856-0.
- Cinaroglu, S. (2020). Modelling unbalanced catastrophic health expenditure data by using machine‐learning methods. Intelligent Systems in Accounting, Finance and Management, 27(4), 168–181. https://doi.org/10.1002/isaf.1483.
Paper not yet in RePEc: Add citation now
- Davalos, S., Leng, F., Feroz, E. H., & Cao, Z. (2014). Designing an if–then rules‐based ensemble of heterogeneous bankruptcy classifiers: A genetic algorithm approach. Intelligent Systems in Accounting, Finance and Management, 21(3), 129–153. https://doi.org/10.1002/isaf.1354.
Paper not yet in RePEc: Add citation now
- Divsalar, M., Roodsaz, H., Vahdatinia, F., Norouzzadeh, G., & Behrooz, A. H. (2012). A robust data‐mining approach to bankruptcy prediction: A robust data‐mining approach to bankruptcy prediction. Journal of Forecasting, 31(6), 504–523. https://doi.org/10.1002/for.1232.
Paper not yet in RePEc: Add citation now
- Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: Gradient boosting with categorical features support. https://doi.org/10.48550/arXiv.1810.11363.
Paper not yet in RePEc: Add citation now
- Euler Hermes Economic Research. (2019). The view: Economic research. Insolvency outlook. Retrieved from: https://www.allianz‐trade.com/content/dam/onemarketing/aztrade/allianz‐trade_com/en_gl/erd/publications/pdf/Global‐Insolvencies‐Jan19.pdf (accessed on 21 September 2021).
Paper not yet in RePEc: Add citation now
Farooq, U., & Qamar, M. A. J. (2019). Predicting multistage financial distress: Reflections on sampling, feature and model selection criteria. Journal of Forecasting, 38(7), 632–648. https://doi.org/10.1002/for.2588.
- Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R (2nd ed.). SAGE Publications.
Paper not yet in RePEc: Add citation now
- FinStat. (2021). Dataset of financial statements 2019. Retrieved from https://finstat.sk/datasety-na-stiahnutie February, 14, 2021.
Paper not yet in RePEc: Add citation now
- Freund, Y., & Schapire, R. E. (1997). A decision‐theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139. https://doi.org/10.1006/jcss.1997.1504.
Paper not yet in RePEc: Add citation now
- Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the American Statistical Association, 84(405), 165–175. https://doi.org/10.1080/01621459.1989.10478752.
Paper not yet in RePEc: Add citation now
- García, V., Sánchez, J. S., Marqués, A. I., Florencia, R., & Rivera, G. (2020). Understanding the apparent superiority of over‐sampling through an analysis of local information for class‐imbalanced data. Expert Systems with Applications, 158, 113026. https://doi.org/10.1016/j.eswa.2019.113026.
Paper not yet in RePEc: Add citation now
Geng, R., Bose, I., & Chen, X. (2015). Prediction of financial distress: An empirical study of listed Chinese companies using data mining. European Journal of Operational Research, 241(1), 236–247. https://doi.org/10.1016/j.ejor.2014.08.016.
- Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182. https://doi.org/10.1162/153244303322753616.
Paper not yet in RePEc: Add citation now
- Hajek, P., Olej, V., & Myskova, R. (2014). Forecasting corporate financial performance using sentiment in annual reports stakeholder's decision‐making. Technological and Economic Development of Economy, 20(4), 721–738. https://doi.org/10.3846/20294913.2014.979456.
Paper not yet in RePEc: Add citation now
- Hamal, S., & Serval, O. (2021). Comparing performances and effectiveness of machine learning classifiers in detecting financial accounting fraud for Turkish SMEs. International Journal of Computational Intelligence Systems, 14(1), 769–782. https://doi.org/10.2991/ijcis.d.210203.007.
Paper not yet in RePEc: Add citation now
- Han, J., Kamber, M., & Pei, J. (2012). Data mining concepts and techniques (3rd ed.). Morgan Kaufmann. https://doi.org/10.1016/C2009-0-61819-5.
Paper not yet in RePEc: Add citation now
- Jabeur, S. B., Gharib, C., Mefteh‐Wali, S., & Arfi, W. B. (2021). CatBoost model and artificial intelligence techniques for corporate failure prediction. Technological Forecasting and Social Change, 166, 120658. https://doi.org/10.1016/j.techfore.2021.120658.
Paper not yet in RePEc: Add citation now
- Jabeur, S. B., Stef, N., & Carmona, P. (2022). Bankruptcy prediction using the XGBoost algorithm and variable importance feature engineering. Computational Economy. https://doi.org/10.1007/s10614-021-10227-1.
Paper not yet in RePEc: Add citation now
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (p. 204). Springer.
Paper not yet in RePEc: Add citation now
- Kleinbaum, D., Kupper, L., Nizam, A., & Rosenberg, E. (2013). Applied regression analysis and other multivariable methods. Nelson Education.
Paper not yet in RePEc: Add citation now
- Kou, G., Xu, Y., Peng, Y., Shen, F., Chen, Y., Chang, K., & Kou, S. (2021). Bankruptcy prediction for SMEs using transactional data and two‐stage multiobjective feature selection. Decision Support Systems, 140, 113429. https://doi.org/10.1016/j.dss.2020.113429.
Paper not yet in RePEc: Add citation now
Kovacova, M., & Kliestik, T. (2017). Logit and probit application for the prediction of bankruptcy in Slovak companies. Equilibrium, 12(4), 775–791. https://doi.org/10.24136/eq.v12i4.40.
- Kuppili, V., Tripathi, D., & Reddy Edla, D. (2019). Credit score classification using spiking extreme learning machine. Computational Intelligence, 36, 402–426. https://doi.org/10.1111/coin.12242.
Paper not yet in RePEc: Add citation now
- Lahmiri, S., Bekiros, S., Giakoumelou, A., & Bezzina, F. (2020). Performance assessment of ensemble learning systems in financial data classification. Intelligent Systems in Accounting, Finance and Management, 27(1), 3–9. https://doi.org/10.1002/isaf.1460.
Paper not yet in RePEc: Add citation now
- Le, T. (2022). A comprehensive survey of imbalanced learning methods for bankruptcy prediction. IET Communications, 16, 433–441. https://doi.org/10.1049/cmu2.12268.
Paper not yet in RePEc: Add citation now
- Le, T., Vo, B., Fujita, H., Nguyen, N.‐T., & Baik, S. W. (2019). A fast and accurate approach for bankruptcy forecasting using squared logistics loss with GPU‐based extreme gradient boosting. Information Sciences, 494, 294–310. https://doi.org/10.1016/j.ins.2019.04.060.
Paper not yet in RePEc: Add citation now
Le, T., Vo, M. T., Vo, B., Lee, M. Y., & Baik, S. W. (2019). A hybrid approach using oversampling technique and cost‐sensitive learning for bankruptcy prediction. Complexity, 2019, 1–12. https://doi.org/10.1155/2019/8460934.
- Li, H., & Sun, J. (2009). Gaussian case‐based reasoning for business failure prediction with empirical data in China. Information Sciences, 179, 89–108. https://doi.org/10.1016/j.ins.2008.09.003.
Paper not yet in RePEc: Add citation now
- Li, H., Li, C.‐J., Wu, X.‐J., & Sun, J. (2014). Statistics‐based wrapper for feature selection: An implementation on financial distress identification with support vector machine. Applied Soft Computing, 19, 57–67. https://doi.org/10.1016/j.asoc.2014.01.018.
Paper not yet in RePEc: Add citation now
Liang, D., Lu, C.‐C., Tsai, C.‐F., & Shih, G.‐A. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252(2), 561–572. https://doi.org/10.1016/j.ejor.2016.01.012.
- Liang, D., Tsai, C.‐F., & Wu, H.‐T. (2015). The effect of feature selection on financial distress prediction. Knowledge‐Based Systems, 73, 289–297. https://doi.org/10.1016/j.knosys.2014.10.010.
Paper not yet in RePEc: Add citation now
- Lin, W. C., Lu, Y. H., & Tsai, C. F. (2019). Feature selection in single and ensemble learning‐based bankruptcy prediction models. Expert Systems, 36(1), e12335. https://doi.org/10.1111/exsy.12335.
Paper not yet in RePEc: Add citation now
Liu, Y., Zeng, Q., Li, B., Ma, L., & Ordieres‐Meré, J. (2022). Anticipating financial distress of high‐tech startups in the European Union: A machine learning approach for imbalanced samples. Journal of Forecasting, 41, 1131–1155. https://doi.org/10.1002/for.2852.
- Maung, E. T. W., & Aye, Z. M. (2020). Comparison of data mining classification Algorithms: C5.0 and CART for car evaluation and credit card information datasets. National Journal of Parallel and Software Computing, 1(1), 75–80.
Paper not yet in RePEc: Add citation now
- Melo, F. (2013). Area under the ROC curve. In W. Dubitzky, O. Wolkenhauer, K. H. Cho, & H. Yokota (Eds.), Encyclopedia of Systems Biology. Springer.
Paper not yet in RePEc: Add citation now
- Mendes, F., Duarte, J., Vieira, A., & Gaspar‐Cunha, A. (2010). Feature selection for bankruptcy prediction: A multi‐objective optimization approach. In X. Z. Gao, A. Gaspar‐Cunha, M. Köppen, G. Schaefer, & J. Wang (Eds.), Soft Computing in Industrial Applications. Advances in Intelligent and Soft Computing, vol. 75. Springer.
Paper not yet in RePEc: Add citation now
- Molinaro, A. M., Simon, R., & Pfeiffer, R. M. (2005). Prediction error estimation: A comparison of resampling methods. Bioinformatics, 21(15), 3301–3307. https://doi.org/10.1093/bioinformatics/bti499.
Paper not yet in RePEc: Add citation now
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109–131. https://doi.org/10.2307/2490395.
- Papík, M., Papíková, L., & Kajanová, J. (2020). Bankruptcy prediction in chemical industry. Przemysl Chemiczny, 99(12), 1762–1769. https://doi.org/10.15199/62.2020.
Paper not yet in RePEc: Add citation now
- Papík, M., Papíková, L., Kajanová, J., & Bečka, M. (2023). CatBoost: The case of bankruptcy prediction. In B. Alareeni & A. Hamdan (Eds.), Sustainable finance, digitalization and the role of technology. Lecture Notes in Networks and Systems, vol. 487. Springer.
Paper not yet in RePEc: Add citation now
- Patil, N., Lathi, R., & Chitre, V. (2012). Comparison of C5.0 & CART classification. International Journal of Engineering Research & Technology, 1(4), 1–5.
Paper not yet in RePEc: Add citation now
- Pech, M., Prazakova, J., & Pechova, L. (2020). The evaluation of the success rate of corporate failure prediction in a five‐year period. Journal of Competitiveness, 12(1), 108–124. https://doi.org/10.7441/joc.2020.01.07.
Paper not yet in RePEc: Add citation now
- Phuong, T. M., Lin, Z., & Altman, R. B. (2005). Choosing SNPs using feature selection. In 2005 IEEE Computational Systems Bioinformatics Conference (CSB’05), pp. 301–309. https://doi.org/10.1109/CSB.2005.22.
Paper not yet in RePEc: Add citation now
- Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: Unbiased boosting with categorical features. Neural Information Processing Systems, 31, 6638–6648.
Paper not yet in RePEc: Add citation now
- Quinlan, J. R. (1994). C4.5: Programs for machine learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Machine Learning, 16, 235–240.
Paper not yet in RePEc: Add citation now
- Ragab, Y. M., & Saleh, M. A. (2022). Non‐financial variables related to governance and financial distress prediction in SMEs—Evidence from Egypt. Journal of Applied Accounting Research, 23(3), 604–627. https://doi.org/10.1108/JAAR-02-2021-0025.
Paper not yet in RePEc: Add citation now
- Roumani, Y. F., Nwankpa, J. K., & Tanniru, M. (2020). Predicting firm failure in the software industry. Artificial Intelligence Review, 53(6), 4161–4182. https://doi.org/10.1007/s10462-019-09789-2.
Paper not yet in RePEc: Add citation now
- Shin, K.‐S., Lee, T. S., & Kim, H. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28(1), 127–135. https://doi.org/10.1016/j.eswa.2004.08.009.
Paper not yet in RePEc: Add citation now
- Son, H., Hyun, C., Phan, D., & Hwang, H. J. (2019). Data analytic approach for bankruptcy prediction. Expert Systems with Applications, 138, 112816. https://doi.org/10.1016/j.eswa.2019.07.033.
Paper not yet in RePEc: Add citation now
- Soui, M., Smiti, S., Mkaouer, M. W., & Ejbali, R. (2020). Bankruptcy prediction using stacked auto‐encoders. Applied Artificial Intelligence, 34(1), 80–100. https://doi.org/10.1080/08839514.2019.1691849.
Paper not yet in RePEc: Add citation now
Taffler, R. J. (1984). Empirical models for the monitoring of UK corporations. Journal of Banking & Finance, 8(2), 199–227. https://doi.org/10.1016/0378-4266(84)90004-9.
Tang, X., Li, S., Tan, M., & Shi, W. (2020). Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods. Journal of Forecasting, 39, 769–787. https://doi.org/10.1002/for.2661.
Tian, S., Yu, Y., & Guo, H. (2015). Variable selection and corporate bankruptcy forecasts. Journal of Banking & Finance, 52, 89–100. https://doi.org/10.1016/j.jbankfin.2014.12.003.
Tsai, C.‐F., Sue, K.‐L., Hu, Y.‐H., & Chiu, A. (2021). Combining feature selection, instance selection, and ensemble classification techniques for improved financial distress prediction. Journal of Business Research, 130, 200–209. https://doi.org/10.1016/j.jbusres.2021.03.018.
- Tumpach, M., Surovičová, A., Juhászová, Z., Marci, A., & Kubičková, V. (2020). Prediction of the bankruptcy of Slovak companies using neural networks with SMOTE. Ekonomický časopis, 68(10), 1021–1039. https://doi.org/10.31577/ekoncas.2020.10.03.
Paper not yet in RePEc: Add citation now
- Uthayakumar, J., Vengattaraman, T., & Dhavachelvan, P. (2020). Swarm intelligence based classification rule induction (CRI) framework for qualitative and quantitative approach: An application of bankruptcy prediction and credit risk analysis. Journal of King Saud University–Computer and Information Sciences, 32, 647–657. https://doi.org/10.1016/j.jksuci.2017.10.007.
Paper not yet in RePEc: Add citation now
- Wah, Y. B., Ibrahim, N., Hamid, H. A., Rahman, S. A., & Fong, S. (2018). Feature selection methods: Case of filter and wrapper approaches for maximising classification accuracy. Pertanika Journal of Science and Technology, 26(1), 329–340.
Paper not yet in RePEc: Add citation now
- Wang, F., Li, Z., He, F., Wang, R., Yu, W., & Nie, F. (2019). Feature learning viewpoint of AdaBoost and a new algorithm. IEEE Access, 7, 149890–149899. https://doi.org/10.1109/ACCESS.2019.2947359.
Paper not yet in RePEc: Add citation now
- Wang, G., Chen, G., & Chu, Y. (2018). A new random subspace method incorporating sentiment and textual information for financial distress prediction. Electronic Commerce Research and Applications, 29, 30–49. https://doi.org/10.1016/j.elerap.2018.03.004.
Paper not yet in RePEc: Add citation now
- Wang, M., Chen, H., Li, H., Cai, Z., Zhao, X., Tong, C., Li, J., & Xu, X. (2017). Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction. Engineering Applications of Artificial Intelligence, 63, 54–68. https://doi.org/10.1016/j.engappai.2017.05.003.
Paper not yet in RePEc: Add citation now
- Westland, J. C. (2020). Predicting credit card fraud with Sarbanes–Oxley assessments and Fama–French risk factors. Intelligent Systems in Accounting, Finance and Management, 27(2), 95–107. https://doi.org/10.1002/isaf.1472.
Paper not yet in RePEc: Add citation now
- Xiao, Z., Yang, X., Pang, Y., & Dang, X. (2012). The prediction for listed companies' financial distress by using multiple prediction methods with rough set and Dempster–Shafer evidence theory. Knowledge‐Based Systems, 26, 196–206. https://doi.org/10.1016/j.knosys.2011.08.001.
Paper not yet in RePEc: Add citation now
Xie, C., Luo, C., & Yu, X. (2011). Financial distress prediction based on SVM and MDA methods: The case of Chinese listed companies. Quality & Quantity, 45(3), 671–686. https://doi.org/10.1007/s11135-010-9376-y.
- Yeh, C.‐C., Chi, D.‐J., & Lin, Y.‐R. (2014). Going‐concern prediction using hybrid random forests and rough set approach. Information Sciences, 254, 98–110. https://doi.org/10.1016/j.ins.2013.07.011.
Paper not yet in RePEc: Add citation now
- Zelenkov, Y., Fedorova, E., & Chekrizov, D. (2017). Two‐step classification method based on genetic algorithm for bankruptcy forecasting. Expert Systems with Applications, 88, 393–401. https://doi.org/10.1016/j.eswa.2017.07.025.
Paper not yet in RePEc: Add citation now
- Zhang, Y., Liu, R., Heidari, A. A., Wang, X., Chen, Y., Wang, M., & Chen, H. (2021). Towards augmented kernel extreme learning models for bankruptcy prediction: Algorithmic behavior and comprehensive analysis. Neurocomputing, 430, 185–212. https://doi.org/10.1016/j.neucom.2020.10.038.
Paper not yet in RePEc: Add citation now
- Zhou, L., Tam, K. P., & Fujita, H. (2016). Predicting the listing status of Chinese listed companies with multi‐class classification models. Information Sciences, 328, 222–236. https://doi.org/10.1016/j.ins.2015.08.036.
Paper not yet in RePEc: Add citation now
- Zoričák, M., Gnip, P., Drotár, P., & Gazda, V. (2020). Bankruptcy prediction for small‑ and medium‐sized companies using severely imbalanced datasets. Economic Modelling, 84, 165–176. https://doi.org/10.1016/j.econmod.2019.04.003.
Paper not yet in RePEc: Add citation now