- Abergel, F., Anane, M., Chakraborti, A., Jedidi, A., & Toke, I. M. (2016). Limit order books. Cambridge University Press.
Paper not yet in RePEc: Add citation now
Almgren, R. F. (2003). Optimal execution with nonlinear impact functions and trading‐enhanced risk. Applied Mathematical Finance, 10(1), 1–18. https://doi.org/10.1080/135048602100056.
- Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R., & Tayler, P. (1997). Asset pricing under endogenous expectations in an artificial stock market. In The economy as an evolving complex system II (pp. 15–44). CRC Press. https://doi.org/10.1201/9780429496639-2.
Paper not yet in RePEc: Add citation now
- Bershova, N., & Rakhlin, D. (2013). The non‐linear market impact of large trades: Evidence from buy‐side order flow. Quantitative Finance, 13(11), 1759–1778. https://doi.org/10.1080/14697688.2013.861076.
Paper not yet in RePEc: Add citation now
Biais, B., & Foucault, T. (2014). HFT and market quality. Bankers, Markets & Investors, 128(1), 5–19.
Biais, B., Hillion, P., & Spatt, C. (1995). An empirical analysis of the limit order book and the order flow in the Paris Bourse. The Journal of Finance, 50(5), 1655–1689. https://doi.org/10.1111/j.1540-6261.1995.tb05192.x.
Bikhchandani, S., & Sharma, S. (2000). Herd behavior in financial markets. IMF Staff Papers, 47(3), 279–310. https://doi.org/10.2307/3867650.
- Boehmer, E., Li, D., & Saar, G. (2018). The competitive landscape of high‐frequency trading firms. The Review of Financial Studies, 31(6), 2227–2276. https://doi.org/10.1093/rfs/hhx144.
Paper not yet in RePEc: Add citation now
Bouchaud, J.‐P., & Potters, M. (2001). More stylized facts of financial markets: Leverage effect and downside correlations. Physica a: Statistical Mechanics and its Applications, 299(1–2), 60–70. https://doi.org/10.1016/S0378-4371(01)00282-5.
Bouchaud, J.‐P., M'ezard, M., & Potters, M. (2002). Statistical properties of stock order books: Empirical results and models. Quantitative Finance, 2(4), 251–256. https://doi.org/10.1088/1469-7688/2/4/301.
Boyd, N. E., Sahin, B. B., Haigh, M. S., & Harris, J. H. (2016). The prevalence, sources, and effects of herding. Journal of Futures Markets, 36(7), 671–694. https://doi.org/10.1002/fut.21756.
- Brandouy, O., Corelli, A., Veryzhenko, I., & Waldeck, R. (2012). A re‐examination of the “zero is enough” hypothesis in the emergence of financial stylized facts. Journal of Economic Interaction and Coordination, 7(2), 223–248. https://doi.org/10.1007/s11403-012-0099-0.
Paper not yet in RePEc: Add citation now
- Byrd, D. (2019). Explaining agent‐based financial market simulation. arXiv, 1909.11650. https://doi.org/10.48550/arXiv.1909.11650.
Paper not yet in RePEc: Add citation now
- Byrd, D., Hybinette, M., & Balch, T. H. (2020). ABIDES: Towards high‐fidelity multi‐agent market simulation. In Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM‐PADS'20 (pp. 11–22). Association for Computing Machinery. https://doi.org/10.1145/3384441.3395986.
Paper not yet in RePEc: Add citation now
- Capponi, F., & Cont, R. (2019). Trade duration, volatility and market impact. Available at SSRN: https://doi.org/10.2139/ssrn.3351736.
Paper not yet in RePEc: Add citation now
Cartea, A., Donnelly, R., & Jaimungal, S. (2018). Enhancing trading strategies with order book signals. Applied Mathematical Finance, 25(1), 1–35. https://doi.org/10.1080/1350486X.2018.1434009.
Chen, J.‐J., Zheng, B., & Tan, L. (2013). Agent‐based model with asymmetric trading and herding for complex financial systems. PLoS ONE, 8(11), e79531. https://doi.org/10.1371/journal.pone.0079531.
Chen, Q., Hua, X., & Jiang, Y. (2018). Contrarian strategy and herding behaviour in the Chinese stock market. The European Journal of Finance, 24(16), 1552–1568. https://doi.org/10.1080/1351847X.2015.1071715.
- Cliff, D. (2018). An open‐source limit‐order‐book exchange for teaching and research. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1853–1860). IEEE. https://doi.org/10.1109/SSCI.2018.8628760.
Paper not yet in RePEc: Add citation now
- Coletta, A., Moulin, A., Vyetrenko, S., & Balch, T. (2022). Learning to simulate realistic limit order book markets from data as a world agent. In Proceedings of the Third ACM International Conference on AI in Finance (pp. 428–436). Association for Computing Machinery. https://doi.org/10.1145/3533271.3561753.
Paper not yet in RePEc: Add citation now
Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1(2), 223–236. https://doi.org/10.1080/713665670.
Cont, R., & De Larrard, A. (2013). Price dynamics in a Markovian limit order market. SIAM Journal on Financial Mathematics, 4(1), 1–25. https://doi.org/10.1137/110856605.
Cont, R., Kukanov, A., & Stoikov, S. (2014). The price impact of order book events. Journal of Financial Econometrics, 12(1), 47–88. https://doi.org/10.1093/jjfinec/nbt003.
Cont, R., Stoikov, S., & Talreja, R. (2010). A stochastic model for order book dynamics. Operations Research, 58(3), 549–563. https://doi.org/10.1287/opre.1090.0780.
- Duffin, M., & Cartlidge, J. (2018). Agent‐based model exploration of latency arbitrage in fragmented financial markets. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 2312–2320). IEEE. https://doi.org/10.1109/SSCI.2018.8628638.
Paper not yet in RePEc: Add citation now
- Dufour, J.‐M., Garcia, R., & Taamouti, A. (2012). Measuring high‐frequency causality between returns, realized volatility, and implied volatility. Journal of Financial Econometrics, 10(1), 124–163. https://doi.org/10.1093/jjfinec/nbr007.
Paper not yet in RePEc: Add citation now
Fama, E. F. (1991). Efficient capital markets: II. The Journal of Finance, 46(5), 1575–1617. https://doi.org/10.1111/j.1540-6261.1991.tb04636.x.
- Feng, L., Li, B., Podobnik, B., Preis, T., & Stanley, E. H. (2012). Linking agent‐based models and stochastic models of financial markets. Proceedings of the National Academy of Sciences, 109(22), 8388–8393. https://doi.org/10.1073/pnas.1205013109.
Paper not yet in RePEc: Add citation now
Foucault, T., Kadan, O., & Kandel, E. (2005). Limit order book as a market for liquidity. The Review of Financial Studies, 18(4), 1171–1217. https://doi.org/10.1093/rfs/hhi029.
Gareche, A., Disdier, G., Kockelkoren, J., & Bouchaud, J.‐P. (2013). Fokker–Planck description for the queue dynamics of large tick stocks. Physical Review E, 88(3), 032809. https://doi.org/10.1103/PhysRevE.88.032809.
- Gould, M. D., Porter, M. A., Williams, S., McDonald, M., Fenn, D. J., & Howison, S. D. (2013). Limit order books. Quantitative Finance, 13(11), 1709–1742. https://doi.org/10.1080/14697688.2013.803148.
Paper not yet in RePEc: Add citation now
Gu, G.‐F., & Zhou, W.‐X. (2009). Emergence of long memory in stock volatility from a modified Mike‐Farmer model. EPL (Europhysics Letters), 86(4), 48002. https://doi.org/10.1209/0295-5075/86/48002.
- Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. (2017). Improved training of Wasserstein GANs. Advances in Neural Information Processing Systems, 30, 5769–5779. https://dl.acm.org/doi/10.5555/3295222.3295327.
Paper not yet in RePEc: Add citation now
- Hawkes, A. G. (1971). Spectra of some self‐exciting and mutually exciting point processes. Biometrika, 58(1), 83–90. https://doi.org/10.1093/biomet/58.1.83.
Paper not yet in RePEc: Add citation now
- Ho, J., & Salimans, T. (2021). Classifier‐free diffusion guidance. In NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications. https://doi.org/10.48550/arXiv.2207.12598.
Paper not yet in RePEc: Add citation now
- Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33, 6840–6851. https://doi.org/10.48550/arXiv.2006.11239.
Paper not yet in RePEc: Add citation now
- Hochreiter, S., & Schmidhuber, J. (1997). Long short‐term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.
Paper not yet in RePEc: Add citation now
- Karpe, M., Fang, J., Ma, Z., & Wang, C. (2020). Multi‐agent reinforcement learning in a realistic limit order book market simulation. In Proceedings of the First ACM International Conference on AI in Finance (pp. 1–7). Association for Computing Machinery. https://doi.org/10.1145/3383455.3422570.
Paper not yet in RePEc: Add citation now
- Kingma, D. P., Mohamed, S., Rezende, D. J., & Welling, M. (2014). Semi‐supervised learning with deep generative models. Advances in Neural Information Processing Systems, 27, 3581–3589. https://doi.org/10.5555/2969033.2969226.
Paper not yet in RePEc: Add citation now
- Kumar, P. (2021). Deep Hawkes process for high‐frequency market making. arXiv, 2109.15110. https://doi.org/10.48550/arXiv.2109.15110.
Paper not yet in RePEc: Add citation now
- Leal, S. J., & Napoletano, M. (2019). Market stability vs. market resilience: Regulatory policies experiments in an agent‐based model with low‐and high‐frequency trading. Journal of Economic Behavior & Organization, 157, 15–41. https://doi.org/10.1016/j.jebo.2017.04.013.
Paper not yet in RePEc: Add citation now
Lee, E. J. (2015). High frequency trading in the Korean index futures market. Journal of Futures Markets, 35(1), 31–51. https://doi.org/10.1002/fut.21640.
- Li, J., Wang, X., Lin, Y., Sinha, A., & Wellman, M. (2020). Generating realistic stock market order streams. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, pp. 727–734). AAAI Press. https://doi.org/10.1609/aaai.v34i01.5415.
Paper not yet in RePEc: Add citation now
Lillo, F., & Farmer, D. J. (2004). The long memory of the efficient market. Studies in Nonlinear Dynamics and Econometrics, 8(3), 1–33. https://doi.org/10.2202/1558-3708.1226.
- Lillo, F., Farmer, J. D., & Mantegna, R. N. (2003). Master curve for price‐impact function. Nature, 421(6919), 129–130. https://doi.org/10.1038/421129a.
Paper not yet in RePEc: Add citation now
McGroarty, F., Booth, A., Gerding, E., & Chinthalapati, V. L. (2019). High frequency trading strategies, market fragility and price spikes: An agent based model perspective. Annals of Operations Research, 282(1), 217–244. https://doi.org/10.1007/s10479-018-3019-4.
- Mei, H., & Eisner, J. M. (2017). The neural Hawkes process: A neurally self‐modulating multivariate point process. Advances in Neural Information Processing Systems, 30, 6757–6767. https://dl.acm.org/doi/10.5555/3295222.3295420.
Paper not yet in RePEc: Add citation now
- Morariu‐Patrichi, M., & Pakkanen, M. S. (2022). State‐dependent Hawkes processes and their application to limit order book modelling. Quantitative Finance, 22(3), 563–583. https://doi.org/10.1080/14697688.2021.1983199.
Paper not yet in RePEc: Add citation now
Nawn, S., & Banerjee, A. (2019). Do the limit orders of proprietary and agency algorithmic traders discover or obscure security prices? Journal of Empirical Finance, 53, 109–125. https://doi.org/10.1016/j.jempfin.2019.06.003.
Næs, R., & Skjeltorp, J. A. (2006). Order book characteristics and the volume–volatility relation: Empirical evidence from a limit order market. Journal of Financial Markets, 9(4), 408–432. https://doi.org/10.1016/j.finmar.2006.04.001.
- Nolte, I., Salmon, M., & Adcock, C. (2016). High frequency trading and limit order book dynamics. Routledge. https://doi.org/10.4324/9781315737676.
Paper not yet in RePEc: Add citation now
- Paddrik, M., Hayes, R., Todd, A., Yang, S., Beling, P., & Scherer, W. (2012). An agent based model of the E‐Mini S&P 500 applied to flash crash analysis. In 2012 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr) (pp. 1–8). IEEE. https://doi.org/10.1109/CIFEr.2012.6327800.
Paper not yet in RePEc: Add citation now
Panayi, E., & Peters, G. W. (2015). Stochastic simulation framework for the limit order book using liquidity‐motivated agents. International Journal of Financial. Engineering, 2(2), 1550013. https://doi.org/10.1142/S2424786315500139.
- Peng, C.‐K., Buldyrev, S. V., Havlin, S., Michael Simons, H., Stanley, E., & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review E, 49(2), 1685. https://doi.org/10.1103/physreve.49.1685.
Paper not yet in RePEc: Add citation now
- Preis, T., Golke, S., Paul, W., & Schneider, J. J. (2007). Statistical analysis of financial returns for a multiagent order book model of asset trading. Physical Review E, 76(1), 016108. https://doi.org/10.1103/PhysRevE.76.016108.
Paper not yet in RePEc: Add citation now
- Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10684–10695). IEEE. https://doi.org/10.1109/CVPR52688.2022.01042.
Paper not yet in RePEc: Add citation now
Schulmeister, S. (2009). Profitability of technical stock trading: Has it moved from daily to intraday data? Review of Financial Economics, 18(4), 190–201. https://doi.org/10.1016/j.rfe.2008.10.001.
- Serrano, A. S. (2020). High‐frequency trading and systemic risk: A structured review of findings and policies. Review of Economics, 71(3), 169–195. https://doi.org/10.1515/roe-2020-0028.
Paper not yet in RePEc: Add citation now
- Shi, Z., & Cartlidge, J. (2021). The limit order book recreation model (LOBRM): An extended analysis. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 204–220). Springer. https://doi.org/10.1007/978-3-030-86514-6_13.
Paper not yet in RePEc: Add citation now
- Shi, Z., & Cartlidge, J. (2022). State dependent parallel neural Hawkes process for limit order book event stream prediction and simulation. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 1607–1615). Association for Computing Machinery. https://doi.org/10.1145/3534678.3539462.
Paper not yet in RePEc: Add citation now
- Shi, Z., Yu, C., & Cartlidge, J. (2021). The LOB recreation model: Predicting the limit order book from TAQ history using an ordinary differential equation recurrent neural network. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35(1), pp. 548–556). AAAI Press. https://doi.org/10.1609/aaai.v35i1.16133.
Paper not yet in RePEc: Add citation now
Sirignano, J., & Cont, R. (2019). Universal features of price formation in financial markets: Perspectives from deep learning. Quantitative Finance, 19(9), 1449–1459. https://doi.org/10.1080/14697688.2019.1622295.
Stanley, E. H., Plerou, V., & Gabaix, X. (2008). A statistical physics view of financial fluctuations: Evidence for scaling and universality. Physica A: Statistical Mechanics and its Applications, 387(15), 3967–3981. https://doi.org/10.1016/j.physa.2008.01.093.
- Vyetrenko, S., Byrd, D., Petosa, N., Mahfouz, M., Dervovic, D., Veloso, M., & Balch, T. (2020). Get real: Realism metrics for robust limit order book market simulations. In Proceedings of the First ACM International Conference on AI in Finance (pp. 1–8). ACM. https://doi.org/10.1145/3383455.3422561.
Paper not yet in RePEc: Add citation now
Wah, E., & Wellman, M. P. (2016). Latency arbitrage in fragmented markets: A strategic agent‐based analysis. Algorithmic Finance, 5(3–4), 69–93. https://doi.org/10.3233/AF-160060.
Wang, X., Hoang, C., Vorobeychik, Y., & Wellman, M. P. (2021). Spoofing the limit order book: A strategic agent‐based analysis. Games, 12(2), 46. https://doi.org/10.3390/g12020046.
- Yagemann, C., Chung, S. P., Uzun, E., Ragam, S., Saltaformaggio, B., & Lee, W. (2020). On the feasibility of automating stock market manipulation. In Annual Computer Security Applications Conference (pp. 277–290). Association for Computing Machinery. https://doi.org/10.1145/3427228.3427241.
Paper not yet in RePEc: Add citation now
- Zhang, Z., Zohren, S., & Roberts, S. (2019). Deeplob: Deep convolutional neural networksfor limit order books. IEEE Transactions on Signal Processing, 67(11), 3001–3012. https://doi.org/10.1109/TSP.2019.2907260.
Paper not yet in RePEc: Add citation now
Zhou, R. T., & Lai, R. N. (2009). Herding and information based trading. Journal of Empirical Finance, 16(3), 388–393. https://doi.org/10.1016/j.jempfin.2009.01.004.