Bańbura, M., Giannone, D., & Lenza, M. (2015). Conditional forecasts and scenario analysis with vector autoregressions for large cross‐sections. International Journal of Forecasting, 31, 739–756.
Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector autoregressions. Journal of Applied Econometrics, 25, 71–92.
Bloor, C., & Matheson, T. (2010). Analysing shock transmission in a data‐rich environment: A large BVAR for New Zealand. Empirical Economics, 39, 537–558.
Canova, F., & Matthes, C. (2018). A composite likelihood approach for dynamic structural models (Working Paper No. WP 18‐12). Richmond, VA: Federal Reserve Bank of Richmond. https://doi.org/10.21144/wp18-12.
Carriero, A., Clark, T., & Marcellino, M. (2016). Common drifting volatility in large Bayesian VARs. Journal of Business and Economic Statistics, 34, 375–390.
Carriero, A., Clark, T., & Marcellino, M. (2018). Measuring uncertainty and its impact on the economy. Review of Economics and Statistics, 100(5), 799–815.
Carriero, A., Clark, T., & Marcellino, M. (2019). Large vector autoregressions with stochastic volatility and flexible priors. Journal of Econometrics, 212(1), 137–154.
- Carriero, A., Kapetanios, G., & Marcellino, M. (2010). Forecasting exchange rates with a large Bayesian VAR. International Journal of Forecasting, 25, 400–417.
Paper not yet in RePEc: Add citation now
Carriero, A., Kapetanios, G., & Marcellino, M. (2012). Forecasting government bond yields with large Bayesian vector auto regressions. Journal of Banking & Finance, 36(7), 2026–2047.
Chan, J. (2020). Large Bayesian VARs: A flexible Kronecker error covariance structure. Journal of Business and Economic Statistics, 38, 68–79.
Chan, J., & Eisenstat, E. (2018). Bayesian model comparison for time‐varying parameter VARs with stochastic volatility. Journal of Applied Econometrics, 33, 509–532.
Chan, J., & Grant, A. (2016). On the observed‐data Deviance Information Criterion for volatility modeling. Journal of Financial Econometrics, 14, 772–802.
- Clark, T. (2011). Real‐time density forecasts from BVARs with stochastic volatility. Journal of Business and Economic Statistics, 29, 327–341.
Paper not yet in RePEc: Add citation now
D'Agostino, A., Gambetti, L., & Giannone, D. (2013). Macroeconomic forecasting and structural change. Journal of Applied Econometrics, 28, 82–101.
Diebold, F., & Mariano, R. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13, 253–263.
Elliott, G., Gargano, A., & Timmermann, A. (2013). Complete subset regressions. Journal of Econometrics, 177, 357–373.
Gefang, D. (2014). Bayesian doubly adaptive elastic‐net Lasso for VAR shrinkage. International Journal of Forecasting, 30, 1–11.
- Genest, C., McConway, K., & Schervish, M. (1986). Characterization of externally Bayesian pooling operators. Annals of Statistics, 14, 487–501.
Paper not yet in RePEc: Add citation now
- Genest, C., Weerahandi, S., & Zidek, J. (1984). Aggregating opinions through logarithmic pooling. Theory and Decision, 17, 61–70.
Paper not yet in RePEc: Add citation now
George, E., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometric, 142(1), 553–580.
Geweke, J., & Amisano, G. (2011). Optimal prediction pools. Journal of Econometrics, 164, 130–141.
Giannone, D., Lenza, M., Momferatou, D., & Onorante, L. (2014). Short‐term inflation projections: A Bayesian vector autoregressive approach. International Journal of Forecasting, 30, 635–644.
Hall, S., & Mitchell, J. (2007). Combining density forecasts. International Journal of Forecasting, 23, 1–13.
Jarociński, M., & Maćkowiak, B. (2017). Granger causal priority and choice of variables in vector autoregressions. Review of Economics and Statistics, 99, 319–329.
Kastner, G. (2019). Sparse Bayesian time‐varying covariance estimation in many dimensions. Journal of Econometrics, 210, 98–115.
Kastner, G., & Huber, F. (2017), Sparse Bayesian vector autoregressions in huge dimensions. Available at https://arxiv.org/abs/1704.03239.
Koop, G. (2013). Forecasting with medium and large Bayesian VARs. Journal of Applied Econometrics, 28, 177–203.
Koop, G., & Korobilis, D. (2016). Model uncertainty in panel vector autoregressive models. European Economic Review, 81, 115–131.
Koop, G., Leon‐Gonzalez, R., & Strachan, R. (2009). On the evolution of the monetary policy transmission mechanism. Journal of Economic Dynamics and Control, 33, 997–1017.
Korobilis, D. (2013). VAR Forecasting using Bayesian variable selection. Journal of Applied Econometrics, 28, 204–230.
- Kroese, D., Taimre, T., & Botev, Z. (2011). Handbook of Monte Carlo methods. Hoboken, NY: Wiley.
Paper not yet in RePEc: Add citation now
- McCracken, M., & Ng, S. (2016). FRED‐MD: A monthly database for macroeconomic research. Journal of Business and Economic Statistics, 34, 574–589.
Paper not yet in RePEc: Add citation now
- McCracken, M., Owyang, M., & Sekhposyan, T. (2016). Real‐time forecasting with a large, mixed frequency Bayesian VAR (Working Paper No. 2015‐30). St, Louis, MO: Federal Reserve Bank of St. Louis.
Paper not yet in RePEc: Add citation now
Pakel, C., Shephard, N., Sheppard, K., & Engle, R. (2014). Fitting vast dimensional time‐varying covariance models. Retrieved from http://staff.bilkent.edu.tr/cavit/research/.
Primiceri, G. (2005). Time varying structural vector autoregressions and monetary policy. Review of Economic Studies, 72, 821–852.
- Qu, Z. (2016). A composite likelihood approach to analyze singular DSGE models. Boston, MA: Boston University. Retrieved from http://people.bu.edu/qu/singular/singular.pdf.
Paper not yet in RePEc: Add citation now
- Ribatet, M., Cooley, D., & Davison, A. (2012). Bayesian inference from composite likelihoods, with an application to spatial extremes. Statistica Sinica, 22, 813–845.
Paper not yet in RePEc: Add citation now
- Roche, A. (2016). Composite Bayesian inference (Working paper). Available at https://arxiv.org/abs/1512.07678.
Paper not yet in RePEc: Add citation now
- Varin, C., Reid, N., & Firth, D. (2011). An overview of composite likelihood methods. Statistica Sinica, 21, 5–42.
Paper not yet in RePEc: Add citation now