Alessi, L., Ghysels, E., Onorante, L., et al. (2014). Central bank macroeconomic forecasting during the global financial crisis: The European Central Bank and Federal Reserve Bank of New York experiences. Journal of Business & Economic Statistics, 32(4), 483–500.
Amisano, G., & Giacomini, R. (2007). Comparing density forecasts via weighted likelihood ratio tests. Journal of Business & Economic Statistics, 25(2), 177–190.
Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25(1), 71–92.
- Banerjee, O., Ghaoui, L. E., & D'Aspremont, A. (2008). Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research, 9, 485–516.
Paper not yet in RePEc: Add citation now
- Bashir, A., Carvalho, C. M., Hahn, P. R., & Jones, M. B. (2019). Post‐processing posteriors over precision matrices to produce sparse graph estimates. Bayesian Analysis, 14(4), 1075–1090.
Paper not yet in RePEc: Add citation now
Berkowitz, J. (2001). Testing density forecasts, with applications to risk management. Journal of Business & Economic Statistics, 19(4), 465–474.
Bernanke, B. S., Boivin, J., & Eliasz, P. (2005). Measuring the effects of monetary policy: A factor‐augmented vector autoregressive (FAVAR) approach. The Quarterly Journal of Economics, 120(1), 387–422.
Bernardi, M., & Catania, L. (2018). The model confidence set package for r. International Journal of Computational Economics and Econometrics, 8(2), 144–158.
Bhattacharya, A., Pati, D., Pillai, N. S., & Dunson, D. B. (2015). Dirichlet–Laplace priors for optimal shrinkage. Journal of the American Statistical Association, 110(512), 1479–1490.
Carriero, A., Clark, T. E., & Marcellino, M. (2015). Bayesian VARs: Specification choices and forecast accuracy. Journal of Applied Econometrics, 30(1), 46–73.
Carriero, A., Clark, T. E., & Marcellino, M. (2019). Large Bayesian vector autoregressions with stochastic volatility and non‐conjugate priors. Journal of Econometrics, 212(1), 137–154.
Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). The horseshoe estimator for sparse signals. Biometrika, 97(2), 465–480.
Clark, T. E. (2011). Real‐time density forecasts from Bayesian vector autoregressions with stochastic volatility. Journal of Business & Economic Statistics, 29(3), 327–341.
Cross, J. L., Hou, C., & Poon, A. (2020). Macroeconomic forecasting with large Bayesian VARs: Global‐local priors and the illusion of sparsity. International Journal of Forecasting, 36(3), 899–915.
De Mol, C., Giannone, D., & Reichlin, L. (2008). Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components? Journal of Econometrics, 146(2), 318–328.
Del Negro, M., & Schorfheide, F. (2004). Priors from general equilibrium models for VARs. International Economic Review, 45(2), 643–673.
Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13(3), 253–263.
- Doan, T., Litterman, R., & Sims, C. (1984). Forecasting and conditional projection using realistic prior distributions. Econometric Reviews, 3(1), 1–100.
Paper not yet in RePEc: Add citation now
- Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432–441.
Paper not yet in RePEc: Add citation now
- Friedman, J., Hastie, T., & Tibshirani, R. (2019). glasso: Graphical lasso: Estimation of gaussian graphical models. R package version 1.11.
Paper not yet in RePEc: Add citation now
- Friedman, J., Hastie, T., Höfling, H., & Tibshirani, R. (2007). Pathwise coordinate optimization. The Annals of Applied Statistics, 1(2), 302–332.
Paper not yet in RePEc: Add citation now
- George, E. I., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88(423), 881–889.
Paper not yet in RePEc: Add citation now
- George, E. I., & McCulloch, R. E. (1997). Approaches for Bayesian variable selection. Statistica Sinica, 7(2), 339–373.
Paper not yet in RePEc: Add citation now
George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553–580.
Geweke, J., & Amisano, G. (2010). Comparing and evaluating Bayesian predictive distributions of asset returns. International Journal of Forecasting, 26(2), 216–230.
Giannone, D., Lenza, M., & Primiceri, G. E. (2015). Prior selection for vector autoregressions. Review of Economics and Statistics, 97(2), 436–451.
Giannone, D., Lenza, M., & Primiceri, G. E. (2017). Economic predictions with big data: The illusion of sparsity. CEPR Discussion Paper No. DP12256.
Giordani, P., & Villani, M. (2010). Forecasting macroeconomic time series with locally adaptive signal extraction. International Journal of Forecasting, 26(2), 312–325.
- Griffin, J. E., & Brown, P. J. (2010). Inference with normal‐gamma prior distributions in regression problems. Bayesian Analysis, 5(1), 171–188.
Paper not yet in RePEc: Add citation now
Hahn, P. R., & Carvalho, C. M. (2015). Decoupling shrinkage and selection in Bayesian linear models: A posterior summary perspective. Journal of the American Statistical Association, 110(509), 435–448.
Hall, A. R., Inoue, A., Nason, J. M., & Rossi, B. (2012). Information criteria for impulse response function matching estimation of DSGE models. Journal of Econometrics, 170(2), 499–518.
Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453–497.
Huber, F., & Feldkircher, M. (2019). Adaptive shrinkage in Bayesian vector autoregressive models. Journal of Business & Economic Statistics, 37(1), 27–39.
Huber, F., Koop, G., & Onorante, L. (2020). Inducing sparsity and shrinkage in time‐varying parameter models. Journal of Business & Economic Statistics, 1–15.
Ingram, B. F., & Whiteman, C. H. (1994). Supplanting the Minnesota prior: Forecasting macroeconomic time series using real business cycle model priors. Journal of Monetary Economics, 34(3), 497–510.
Kadiyala, K. R., & Karlsson, S. (1997). Numerical methods for estimation and inference in Bayesian VAR‐models. Journal of Applied Econometrics, 12(2), 99–132.
Koop, G. M. (2013). Forecasting with medium and large Bayesian VARs. Journal of Applied Econometrics, 28(2), 177–203.
Litterman, R. B. (1986). Forecasting with Bayesian vector autoregressions—Five years of experience. Journal of Business & Economic Statistics, 4(1), 25–38.
- McCracken, M. W., & Ng, S. (2016). FRED‐MD: A monthly database for macroeconomic research. Journal of Business & Economic Statistics, 34(4), 574–589.
Paper not yet in RePEc: Add citation now
- Meinshausen, N., & Bühlmann, P. (2006). High‐dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34(3), 1436–1462.
Paper not yet in RePEc: Add citation now
- Polson, N. G., & Scott, J. G. (2010). Shrink globally, act locally: Sparse Bayesian regularization and prediction. Bayesian Statistics, 9, 501–538.
Paper not yet in RePEc: Add citation now
- Puelz, D., Hahn, P. R., & Carvalho, C. M. (2017). Variable selection in seemingly unrelated regressions with random predictors. Bayesian Analysis, 12(4), 969–989.
Paper not yet in RePEc: Add citation now
Puelz, D., Hahn, P. R., & Carvalho, C. M. (2020). Portfolio selection for individual passive investing. Applied Stochastic Models in Business and Industry, 36(1), 124–142.
- Ray, P., & Bhattacharya, A. (2018). Signal adaptive variable selector for the horseshoe prior. arXiv:1810.09004.
Paper not yet in RePEc: Add citation now
- Theil, H., & Goldberger, A. S. (1961). On pure and mixed statistical estimation in economics. International Economic Review, 2(1), 65–78.
Paper not yet in RePEc: Add citation now
- Woody, S., Carvalho, C. M., & Murray, J. S. (2020). Model interpretation through lower‐dimensional posterior summarization. Journal of Computational and Graphical Statistics, 1–9.
Paper not yet in RePEc: Add citation now
Zellner, A. (1985). Bayesian econometrics. Econometrica, 53(2), 253–269.