Aigner, D., Lovell, C. A. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), 21–37.
Alvarez, A., Amsler, C., Orea, L., & Schmidt, P. (2006). Interpreting and testing the scaling property in models where inefficiency depends on firm characteristics. Journal of Productivity Analysis, 25(3), 201–212.
- Amsler, C., Prokhorov, A., & Schmidt, P. (2016). Endogeneity in stochastic frontier models. Journal of Econometrics, 190(2), 280–288.
Paper not yet in RePEc: Add citation now
Amsler, C., Prokhorov, A., & Schmidt, P. (2017). Endogenous environmental variables in stochastic frontier models. Journal of Econometrics, 199(2), 131–140.
Andrews, D. W. K. (1999). Estimation when a parameter is on a boundary. Econometrica, 67(6), 1341–1383.
Andrews, D. W. K. (2001). Testing when a parameter is on the boundary of the maintained hypothesis. Econometrica, 69(3), 683–734.
- Azzalini, A. (2013). The skew‐normal and related families, Institute of Mathematical Statistics Monographs: Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Azzalini, A., & Dalla Valle, A. (1996). The multivariate skew‐normal distribution. Biometrika, 83(4), 715–726.
Paper not yet in RePEc: Add citation now
- Battese, G. E., & Coelli, T. J. (1988). Prediction of firm‐level technical efficiencies with a generalized frontier production function and panel data. Journal of Econometrics, 38(3), 387–399.
Paper not yet in RePEc: Add citation now
- Berry, R. A., & Cline, W. R. (1979). Agrarian structure and productivity in developing countries: A study prepared for the international labour office within the framework of the world employment programme: Johns Hopkins University Press.
Paper not yet in RePEc: Add citation now
Bottai, M. (2003). Confidence regions when the Fisher information is zero. Biometrika, 90(1), 73–84.
- Bravo‐Ureta, B. E., Cocchi, H., & Solis, D. (2006). Adoption of soil conservation technologies in El Salvador: A cross‐section and over‐time analysis. (18): Office of Evaluation and Oversight.
Paper not yet in RePEc: Add citation now
Bravo‐Ureta, B. E., González‐Flores, M., Greene, W., & Solís, D. (2021). Technology and technical efficiency change: Evidence from a difference in differences selectivity corrected stochastic production frontier model. American Journal of Agricultural Economics, 103(1), 362–385.
Bravo‐Ureta, B. E., Greene, W., & Solís, D. (2012). Technical efficiency analysis correcting for biases from observed and unobserved variables: An application to a natural resource management project. Empirical Economics, 43(1), 55–72.
Centorrino, S., & Pérez‐Urdiales, M. (2023). Maximum likelihood estimation of stochastic frontier models with endogeneity. Journal of Econometrics, 234(1), 82–105.
Chen, Y.‐T., Hsu, Y.‐C., & Wang, H.‐J. (2020). A stochastic frontier model with endogenous treatment status and mediator. Journal of Business & Economic Statistics, 38(2), 243–256.
- Chernoff, H. (1954). On the distribution of the likelihood ratio. Annals of Mathematical Statistics, 25(3), 573–578.
Paper not yet in RePEc: Add citation now
- Cox, D. R., & Hinkley, D. V. (1979). Theoretical statistics: Taylor & Francis.
Paper not yet in RePEc: Add citation now
- de Janvry, A., Sadoulet, E., & Suri, T. (2017). Field experiments in developing country agriculture. In Banerjee, A. V., & Duflo, E. (Eds.), Handbook of economic field experiments, Handbook of Economic Field Experiments, Vol. 2: North‐Holland, pp. 427–466.
Paper not yet in RePEc: Add citation now
- Ekvall, K. O., & Bottai, M. (2022). Confidence regions near singular information and boundary points with applications to mixed models. Annals of Statistics, Forthcoming.
Paper not yet in RePEc: Add citation now
- Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253–290.
Paper not yet in RePEc: Add citation now
Gourieroux, C., & Monfort, A. (1995). Statistics and econometric models, Statistics and Econometric Models 2 volume set, Vol. 1: Cambridge University Press.
Greene, W. (2010). A stochastic frontier model with correction for sample selection. Journal of Productivity Analysis, 34(1), 15–24.
Guggenberger, P. (2010). The impact of a Hausman pretest on the asymptotic size of a hypothesis test. Econometric Theory, 26(2), 369–382.
Heckman, J. J., & Robb, R. (1985). Alternative methods for evaluating the impact of interventions: An overview. Journal of Econometrics, 30(1), 239–267.
Imbens, G. W., & Newey, W. K. (2009). Identification and estimation of triangular simultaneous equations models without additivity. Econometrica, 77(5), 1481–1512.
Jimi, N. A., Nikolov, P. V., Malek, M. A., & Kumbhakar, S. (2019). The effects of access to credit on productivity: Separating technological changes from changes in technical efficiency. Journal of Productivity Analysis, 52(1), 37–55.
Jondrow, J., Lovell, C. A. K., Materov, I. S., & Schmidt, P. (1982). On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of Econometrics, 19(2), 233–238.
Kumbhakar, S. C., & Lovell, C. A. K. (2003). Stochastic frontier analysis, Stochastic Frontier Analysis: Cambridge University Press.
Kumbhakar, S. C., Tsionas, E. G., & Sipiläinen, T. (2009). Joint estimation of technology choice and technical efficiency: An application to organic and conventional dairy farming. Journal of Productivity Analysis, 31(3), 151–161.
- Kutlu, L., Tran, K. C., & Tsionas, M. G. (2019). A time‐varying true individual effects model with endogenous regressors. Journal of Econometrics, 211(2), 539–559.
Paper not yet in RePEc: Add citation now
Lai, H. (2015). Maximum likelihood estimation of the stochastic frontier model with endogenous switching or sample selection. Journal of Productivity Analysis, 43(1), 105–117.
Lai, H., & Kumbhakar, S. C. (2018). Endogeneity in panel data stochastic frontier model with determinants of persistent and transient inefficiency. Economics Letters, 162, 5–9.
Lee, L.‐F. (1993). Asymptotic distribution of the maximum likelihood estimator for a stochastic frontier function model with a singular information matrix. Econometric Theory, 9(3), 413–430.
Lee, L.‐F., & Chesher, A. (1986). Specification testing when score test statistics are identically zero. Journal of Econometrics, 31(2), 121–149.
Lee, L.‐F., & Tyler, W. G. (1978). The stochastic frontier production function and average efficiency: An empirical analysis. Journal of Econometrics, 7(3), 385–389.
Linton, O., Maasoumi, E., & Whang, Y.‐J. (2005). Consistent testing for stochastic dominance under general sampling schemes. The Review of Economic Studies, 72(3), 735–765.
- Maddala, G. S. (1992). Introduction to econometrics: Macmillan.
Paper not yet in RePEc: Add citation now
McCloud, N., & Kumbhakar, S. C. (2008). Do subsidies drive productivity? A cross‐country analysis of Nordic dairy farms. Advances in Econometrics, 23(1), 245–274.
Mundlak, Y. (1961). Empirical production function free of management bias. American Journal of Agricultural Economics, 43(1), 44–56.
Newey, W. K., Powell, J. L., & Vella, F. (1999). Nonparametric estimation of triangular simultaneous equations models. Econometrica, 67(3), 565–603.
Parmeter, C. F., & Kumbhakar, S. C. (2014). Efficiency analysis: A primer on recent advances. Foundations and Trends® in Econometrics, 7(3–4), 191–385.
- Politis, D. N., & Romano, J. P. (1994). Large sample confidence regions based on subsamples under minimal assumptions. Annals of Statistics, 22(4), 2031–2050.
Paper not yet in RePEc: Add citation now
- Rotnitzky, A., Cox, D. R., Bottai, M., & Robins, J. (2000). Likelihood‐based inference with singular information matrix. Bernoulli, 6(2), 243–284.
Paper not yet in RePEc: Add citation now
- Sargan, J. D. (1983). Identification and lack of identification. Econometrica, 51(6), 1605–1633.
Paper not yet in RePEc: Add citation now
Schmidt, P., & Sickles, R. C. (1984). Production frontiers and panel data. Journal of Business & Economic Statistics, 2(4), 367–374.
- Self, S. G., & Liang, K.‐Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82(398), 605–610.
Paper not yet in RePEc: Add citation now
- Simar, L., & Wilson, P. W. (2007). Estimation and inference in two‐stage, semi‐parametric models of production processes. Journal of Econometrics, 136(1), 31–64.
Paper not yet in RePEc: Add citation now
- Simar, L., Knox Lovell, C. A., & Vanden Eeckaut, P. (1994). Stochastic frontiers incorporating exogenous influences on efficiency.
Paper not yet in RePEc: Add citation now
- Stock, J. H., & Yogo, M. (2005). Testing for weak instruments in linear IV regression. In Andrews, D. W. K., & Stock, J. H. E. (Eds.), Identification and inference for econometric models: Essays in honor of Thomas Rothenberg: Cambridge University Press, pp. 80–108.
Paper not yet in RePEc: Add citation now
- Sundberg, R. (1974a). Maximum likelihood theory for incomplete data from an exponential family. Scandinavian Journal of Statistics, 1(2), 49–58.
Paper not yet in RePEc: Add citation now
- Sundberg, R. (1974b). On estimation and testing for the folded normal distribution. Communications in Statistics, 3(1), 55–72.
Paper not yet in RePEc: Add citation now
Wasylenko, M. J., & Erickson, R. A. (1978). “On measuring economic diversification”: Comment. Land Economics, 54(1), 106–109.
- Wilde, J. (2008). A simple representation of the Bera–Jarque–Lee test for probit models. Economics Letters, 101(2), 119–121.
Paper not yet in RePEc: Add citation now
Wooldridge, J. M. (2015). Control function methods in applied econometrics. Journal of Human Resources, 50(2), 420–445.