- Apergis, E., & Apergis, N. (2020). Can the COVID‐19 pandemic and oil prices drive the US Partisan Conflict Index? Energy Research Letters, 1(1), 13144. https://doi.org/10.46557/001c.13144.
Paper not yet in RePEc: Add citation now
- Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross‐section of stock returns. The Journal of Finance LXI, 61, 1645–1680. https://doi.org/10.1111/j.1540-6261.2006.00885.x.
Paper not yet in RePEc: Add citation now
Bank, M., Larch, M., & Peter, G. (2011). Google search volume and its influence on liquidity and returns of German stocks. Financial Markets and Portfolio Management, 25(3), 239–264. https://doi.org/10.1007/s11408-011-0165-y.
Bannigidadmath, D., & Narayan, P. (2015). Stock return predictability and determinants of predictability and profits. Emerging Markets Review, 26, 153–173.
Barber, B. M., & Odean, T. (2008). All That Glitters: the effect of attention and news on the buying behavior of individual and institutional investors. Review of Financial Studies, 21(2), 785–818. https://doi.org/10.1093/rfs/hhm079.
Bijl, L., Kringhaug, G., Molnár, P., & Sandvik, E. (2016). Google searches and stock returns. International Review of Financial Analysis, 45, 150–156. https://doi.org/10.1016/j.irfa.2016.03.015.
Birz, G., & Lott, J. R. (2011). The effect of macroeconomic news on stock returns: New evidence from newspaper coverage. Journal of Banking & Finance, 35, 2791–2800. https://doi.org/10.1016/j.jbankfin.2011.03.006.
- Buttner, D., & Hayo, B. (2010). News and correlations of CEEC‐3 financial markets. Economic Modelling, 27, 915–922. https://doi.org/10.1016/j.econmod.2010.05.014.
Paper not yet in RePEc: Add citation now
Curatola, G., Donadelli, M., & Kizys, R. And Riedel, M. (2016). Investor Sentiment and Sectoral Stock Returns: Evidence from World Cup Games. Finance Research Letters, 17, 267–274. https://doi.org/10.1016/j.frl.2016.03.023.
D'Amuri, F., & Marcucci, J. (2017). The predictive power of Google searches in forecasting US unemployment. International Journal of Forecasting, 33, 801–816. https://doi.org/10.1016/j.ijforecast.2017.03.004.
Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. The Journal of Finance, 66(5), 1461–1499. https://doi.org/10.1111/j.1540-6261.2011.01679.x.
Devpura, N., Narayan, P. K., & Sharma, S. S. (2018). Is stock return predictability time varying? Journal of International Financial Markets Institutions and Money, 52, 152–172. https://doi.org/10.1016/j.intfin.2017.06.001.
- Dyck, A., & Zingales, L. (2003). The media and asset prices. Working Paper, NBER.
Paper not yet in RePEc: Add citation now
Ekinci, C., & Bulut, A. E. (2020). Google search and stock returns: A study on BIST 100 stocks. Global Finance Journal, 100518. https://doi.org/10.1016/j.gfj.2020.100518.
Fang, X., Jiang, Y., & Qian, Z. (2014). The Effects of Individual Investors' Attention on Stock Returns: Evidence from the ChiNext Market. Emerging Markets Finance and Trade, 50, 158–168. https://doi.org/10.2753/REE1540-496X5003S309.
- Fu, M., & Shen, H. (2020). COVID‐19 and corporate performance in the energy industry. Energy Research Letters, 1(1), 12967. https://doi.org/10.46557/001c.12967.
Paper not yet in RePEc: Add citation now
Garcia, D. (2013). Sentiment during recessions. Journal of Finance, 63, 1267–1300.
- Gil‐Alana, L. A., & Monge, M. (2020). Crude oil prices and COVID‐19: Persistence of the shock. Energy Research Letters, 1(1), 13200. https://doi.org/10.46557/001c.13200.
Paper not yet in RePEc: Add citation now
Groseclose, T., & Milyo, J. (2005). A measure of media bias. The Quarterly Journal of Economics, 120, 1191–1237. https://doi.org/10.1162/003355305775097542.
Han, L., Li, Z., & Yin, L. (2018). Investor Attention and Stock Returns: International Evidence. Emerging Markets Finance and Trade, 54, 3168–3188. https://doi.org/10.1080/1540496X.2017.1413980.
- Haroon, O., & Rizvi, S. A. R. (2020). COVID‐19: Media coverage and financial markets behavior—A sectoral inquiry. Journal of Behavioral and Experimental Finance, 27, 100343. https://doi.org/10.1016/j.jbef.2020.100343.
Paper not yet in RePEc: Add citation now
- Hu, H., Tang, L., Zhang, S., & Wang, H. (2018). Predicting the direction of stock markets using optimized neural networks with Google Trends. Neurocomputing, 285, 188–195. https://doi.org/10.1016/j.neucom.2018.01.038.
Paper not yet in RePEc: Add citation now
Joseph, K., Wintoki, M. B., & Zhang, Z. (2011). Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search. International Journal of Forecasting, 27(4), 1116–1127. https://doi.org/10.1016/j.ijforecast.2010.11.001.
Kim, M., & Park, K. (2015). Individual Investor Sentiment and Stock Returns: Evidence from the Korean Stock Market. Emerging Markets Finance and Trade, 51, 1–20.
Kim, N., Lučivjanská, K., Molnár, P., & Villa, R. (2019). Google searches and stock market activity: Evidence from Norway. Finance Research Letters, 28, 208–220. https://doi.org/10.1016/j.frl.2018.05.003.
- Liu, L., Wang, E. Z., & Lee, C. C. (2020). Impact of the COVID‐19 pandemic on the crude oil and stock markets in the US: A time‐varying analysis. Energy Research Letters, 1(1), 13154. https://doi.org/10.46557/001c.13154.
Paper not yet in RePEc: Add citation now
Makin, A. J., Narayan, P. K., & Narayan, S. (2014). What expenditure does Anglosphere foreign borrowing fund? Journal of International Money and Finance, 40, 63–78. https://doi.org/10.1016/j.jimonfin.2013.08.020.
Merton, R. C. (1987). A simple model of capital market equilibrium with incomplete information. The Journal of Finance, 42(3), 483–510. https://doi.org/10.1111/j.1540-6261.1987.tb04565.x.
Mishra, V., & Smyth, R. (2014). Is monthly US natural gas consumption stationary? New evidence from a GARCH unit root test with structural breaks. Energy Policy, 69, 258–262. https://doi.org/10.1016/j.enpol.2014.03.033.
Narayan, P. K. (2019). Can stale oil price news predict stock returns? Energy Economics, 83(C), 430–444. https://doi.org/10.1016/j.eneco.2019.07.022.
- Narayan, P. K. (2020). Oil price news and COVID‐19—Is there any connection? Energy Research Letters, 1(1), 13176. https://doi.org/10.46557/001c.13176.
Paper not yet in RePEc: Add citation now
Narayan, P. K., & Bannigidadmath, D. (2015). Are Indian stock returns predictable? Journal of Banking & Finance, 58, 506–531. https://doi.org/10.1016/j.jbankfin.2015.05.001.
Narayan, P. K., & Bannigidadmath, D. (2017). Does Financial News Predict Stock Returns? New Evidence from Islamic and Non‐Islamic Stocks. Pacific‐Basin Finance Journal, 42, 24–45. https://doi.org/10.1016/j.pacfin.2015.12.009.
Narayan, P. K., & Gupta, R. (2015). Has oil price predicted stock returns for over a century? Energy Economics, 48, 18–23. https://doi.org/10.1016/j.eneco.2014.11.018.
Narayan, P. K., & Liu, R. (2015). A unit root model for trending time‐series energy variables. Energy Economics, 50, 391–402. https://doi.org/10.1016/j.eneco.2014.11.021.
Narayan, P. K., & Phan, D. (2019). A survey of Islamic banking and finance literature: Issues, challenges and future directions. Pacific‐Basin Finance Journal, 53, 484–496. https://doi.org/10.1016/j.pacfin.2017.06.006.
Narayan, P. K., & Phan, D. H. B. (2017). Momentum strategies for Islamic stocks. Pacific‐Basin Finance Journal, 42, 96–112. https://doi.org/10.1016/j.pacfin.2016.05.015.
Narayan, P. K., & Popp, S. (2010). A new unit root test with two structural breaks in level and slope at unknown time. Journal of Applied Statistics, 37(9), 1425–1438. https://doi.org/10.1080/02664760903039883.
Narayan, P. K., Liu, R., & Westerlund, J. (2016). A GARCH model for testing market efficiency. Journal of International Financial Markets Institutions and Money, 41, 121–138. https://doi.org/10.1016/j.intfin.2015.12.008.
Narayan, P. K., Phan, D. H. B., & Sharma, S. S. (2019). Does Islamic stock sensitivity to oil prices have economic significance? Pacific‐Basin Finance Journal, 53, 497–512. https://doi.org/10.1016/j.pacfin.2018.04.003.
Narayan, P. K., Phan, D. H. B., Sharma, S. S., & Westerlund, J. (2016). Are Islamic stock returns predictable? A global perspective. Pacific‐Basin Finance Journal, 40(A), 210–223. https://doi.org/10.1016/j.pacfin.2016.08.008.
- Nguyen, P. C., Schinckus, C., & Nguyen, T. V. H. (2019). Google search and stock returns in emerging markets. Borsa Istanbul Review, 19, 288–296. https://doi.org/10.1016/j.bir.2019.07.001.
Paper not yet in RePEc: Add citation now
Ni, Z.‐X., Wang, D.‐W., & Xue, W.‐J. (2015). Investor sentiment and its nonlinear effect on stock returns ‐ New evidence from the Chinese stock market based on panel quantile regression model. Economic Modelling, 50, 266–274. https://doi.org/10.1016/j.econmod.2015.07.007.
Ozatay, F., Ozmen, E., & Sahinbeyoglu, G. (2009). Emerging market sovereign spreads, global financial considerations and U.S. macroeconomic news. Economic Modelling, 26, 526–531. https://doi.org/10.1016/j.econmod.2008.10.008.
Phan, D. H. B., Sharma, S. S., & Narayan, P. K. (2015). Stock return forecasting: some new evidence. International Review of Financial Analysis, 40, 38–51.
- Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific Reports, 3, 1684. https://doi.org/10.1038/srep01684.
Paper not yet in RePEc: Add citation now
- Qin, M., Zhang, Y. C., & Su, C. W. (2020). The Essential Role of Pandemics: A Fresh Insight into the Oil Market. Energy Research Letters, 1(1), 13166. https://doi.org/10.46557/001c.13166.
Paper not yet in RePEc: Add citation now
Salisu, A. A., & Adeleke, A. I. (2016). Further application of Narayan and Liu (2015) unit root model for trending time series. Economic Modelling, 55, 305–314. https://doi.org/10.1016/j.econmod.2016.02.026.
Salisu, A. A., & Fasanya, I. O. (2013). Modelling oil price volatility with structural breaks. Energy Policy, 53, 554–562.
Salisu, A. A., & Isah, K. O. (2018). Predicting US inflation: Evidence from a new approach. Economic Modelling, 71, 134–158. https://doi.org/10.1016/j.econmod.2017.12.008.
Salisu, A. A., & Mobolaji, H. (2013). Modeling returns and volatility transmission between oil price and US–Nigeria exchange rate. Energy Economics, 39, 169–176. https://doi.org/10.1016/j.eneco.2013.05.003.
Salisu, A. A., Ademuyiwa, I., & Isah, K. (2018). Revisiting the forecasting accuracy of Phillips curve: the role of oil price. Energy Economics, 70, 334–356. https://doi.org/10.1016/j.eneco.2018.01.018.
Salisu, A. A., Ndako, U. B., Oloko, T. F., & Akanni, L. O. (2016). Unit root modeling for trending stock market series. Borsa Istanbul Review, 16(2), 82–91. https://doi.org/10.1016/j.bir.2016.05.001.
Salisu, A. A., Ogbonna, A. E., & Adewuyi, A. (2020). Google trends and the predictability of precious metals. Resources Policy, 65, 101542. https://doi.org/10.1016/j.resourpol.2019.101542.
Salisu, A. A., Swaray, R., & Oloko, T. F. (2019). Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables. Economic Modelling, 76, 153–171. https://doi.org/10.1016/j.econmod.2018.07.029.
- Shin, Y., Yu, B., & Greenwood‐Nimmo, M. (2014). Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework. In Festschrift in honor of Peter Schmidt (pp. 281–314). New York, NY: Springer.
Paper not yet in RePEc: Add citation now
Takeda, F., & Wakao, T. (2014). Google search intensity and its relationship with returns and trading volume of Japanese stocks. Pacific‐Basin Finance Journal, 27, 1–18. https://doi.org/10.1016/j.pacfin.2014.01.003.
Tang, W., & Zhu, L. (2017). How security prices respond to a surge in investor attention: Evidence from Google Search of ADRs. Global Finance Journal, 33, 38–50. https://doi.org/10.1016/j.gfj.2016.09.001.
Westerlund, J., & Narayan, P. K. (2012). Does the choice of estimator matter when forecasting returns? Journal of Banking & Finance, 36, 2632–2640. https://doi.org/10.1016/j.jbankfin.2012.06.005.
Westerlund, J., & Narayan, P. K. (2015). Testing for predictability in conditionally hetoroscedastic stock returns. Journal of Financial Economics, 13, 342–375. https://doi.org/10.1093/jjfinec/nbu001.
- Xu, Q., Bo, Z., Jiang, C., & Liu, Y. (2019). Does Google search index really help predicting stock market volatility? Evidence from a modified mixed data sampling model on volatility. Knowledge‐Based Systems, 166, 170–185. https://doi.org/10.1016/j.knosys.2018.12.025.
Paper not yet in RePEc: Add citation now
Ying, Q., Kong, D., & Luo, D. (2015). Investor Attention, Institutional Ownership, and Stock Return: Empirical Evidence from China. Emerging Markets Finance and Trade, 51(3), 672–685. https://doi.org/10.1080/1540496X.2015.1046339.
Zhang, B., & Wang, Y. (2015). Limited attention of individual investors and stock performance: Evidence from the ChiNext market. Economic Modelling, 50, 94–104. https://doi.org/10.1016/j.econmod.2015.06.009.