- Alexander, C. O., & Leigh, C. T. (1997). On the covariance matrices used in value at risk models. The Journal of Derivatives, 4(3), 50–62.
Paper not yet in RePEc: Add citation now
- Alizadeh, S., Brandt, M. W., & Diebold, F. X. (2002). Range‐based estimation of stochastic volatility models. The Journal of Finance, 57(3), 1047–1091.
Paper not yet in RePEc: Add citation now
Amendola, A., & Storti, G. (2015). Model uncertainty and forecast combination in high‐dimensional multivariate volatility prediction. Journal of Forecasting, 34(2), 83–91.
Andersen, T. G., & Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review, 39(4), 885–905.
- Andersen, T. G., Bollerslev, T., & Diebold, F. X. (2010). Parametric and nonparametric volatility measurement. Handbook of Financial Econometrics: Tools and Techniques, 1, 67–137.
Paper not yet in RePEc: Add citation now
Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2001). The distribution of realized exchange rate volatility. Journal of the American Statistical Association, 96(453), 42–55.
Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica, 71, 579–625.
Bandi, F. M., & Russell, J. R. (2008). Microstructure noise, realized variance, and optimal sampling. The Review of Economic Studies, 75(2), 339–369.
- Bannouh, K., van Dijk, D., & Martens, M. (2009). Range‐based covariance estimation using high‐frequency data: The realized co‐range. Journal of Financial Econometrics, 7(4), 341–372.
Paper not yet in RePEc: Add citation now
Barndorff‐Nielsen, O. E., & Shephard, N. (2002). Estimating Quadratic Variation Using Realized Variance. Journal of Applied Econometrics, 17(5), 457–477.
Barndorff‐Nielsen, O. E., & Shephard, N. (2004). Econometric analysis of realized covariation: High frequency based covariance, regression, and correlation in financial economics. Econometrica, 72(3), 885–925.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.
- Boudoukh, J., Richardson, M., & Whitelaw, R. F. (1997). Investigation of a class of volatility estimators. The Journal of Derivatives, 4(3), 63–71.
Paper not yet in RePEc: Add citation now
- Brandt, M. W., & Jones, C. S. (2006). Volatility forecasting with range‐based egarch models. Journal of Business & Economic Statistics, 24(4), 470–486.
Paper not yet in RePEc: Add citation now
Čech, F., & Baruník, J. (2017). On the modelling and forecasting of multivariate realized volatility: Generalized heterogeneous autoregressive (ghar) model. Journal of Forecasting, 36(2), 181–206.
Chiriac, R., & Voev, V. (2011). Modelling and forecasting multivariate realized volatility. Journal of Applied Econometrics, 26(6), 922–947.
Chou, R. Y. (2005). Forecasting financial volatilities with extreme values: The conditional autoregressive range (carr) model. Journal of Money, Credit and Banking, 37(3), 561–582.
- Christensen, K., & Podolskij, M. (2007). Realized range‐based estimation of integrated variance. Journal of Econometrics, 141(2), 323–349.
Paper not yet in RePEc: Add citation now
Ding, J., & Meade, N. (2010). Forecasting accuracy of stochastic volatility, garch and ewma models under different volatility scenarios. Applied Financial Economics, 20(10), 771–783.
Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339–350.
Engle, R. F., & Gallo, G. M. (2006). A multiple indicators model for volatility using intra‐daily data. Journal of Econometrics, 131(1), 3–27.
Engle, R. F., & Kroner, K. F. (1995). Multivariate simultaneous generalized arch. Econometric Theory, 11(1), 122–150.
Engle, R. F., & Russell, J. R. (1998). Autoregressive conditional duration: A new model for irregularly spaced transaction data. Econometrica, 66(5), 1127–1162.
Engle, R., & Colacito, R. (2006). Testing and valuing dynamic correlations for asset allocation. Journal of Business & Economic Statistics, 24(2), 238–253.
Fleming, J., Kirby, C., & Ostdiek, B. (2001). The economic value of volatility timing. Journal of Finance, 56, 329–352.
Fleming, J., Kirby, C., & Ostdiek, B. (2003). The economic value of volatility timing using “realized” volatility. Journal of Financial Economics, 67(3), 473–509.
Garman, M. B., & Klass, M. J. (1980). On the estimation of security price volatilities from historical data. The Journal of Business, 53(1), 67–78.
Giacomini, R., & Rossi, B. (2010). Forecast comparisons in unstable environments. Journal of Applied Econometrics, 25(4), 595–620.
- Gorgi, P., Hansen, P. R., Janus, P., & Koopman, S. J. (2018). Realized Wishart‐GARCH: A score‐driven multi‐asset volatility model*. Journal of Financial Econometrics, 17(1), 1–32.
Paper not yet in RePEc: Add citation now
Han, Y. (2006). Asset allocation with a high dimensional latent factor stochastic volatility model. The Review of Financial Studies, 19(1), 237–271.
Hansen, P. R., & Lunde, A. (2006). Realized variance and market microstructure noise. Journal of Business & Economic Statistics, 24(2), 127–161.
Hansen, P. R., Huang, Z., & Shek, H. H. (2012). Realized garch: A joint model for returns and realized measures of volatility. Journal of Applied Econometrics, 27(6), 877–906.
Hansen, P. R., Lunde, A., & Voev, V. (2014). Realized beta garch: A multivariate garch model with realized measures of volatility. Journal of Applied Econometrics, 29(5), 774–799.
Harris, R. D. F., & Yilmaz, F. (2010). Estimation of the conditional varianceâĂŞcovariance matrix of returns using the intraday range. International Journal of Forecasting, 26(1), 180–194.
Harvey, D., Leybourne, S., & Newbold, P. (1997). Testing the equality of prediction mean squared errors. International Journal of Forecasting, 13(2), 281–291.
Martens, M., & van Dijk, D. (2007). Measuring volatility with the realized range. Journal of Econometrics, 138(1), 181–207.
McAleer, M., & Medeiros, M. C. (2008). Realized volatility: A review. Econometric Reviews, 27(1‐3), 10–45.
Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370.
Newey, W. K., & West, K. D. (1987). A simple, positive semi‐definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55(3), 703–708.
- Noureldin, D., Shephard, N., & Sheppard, K. (2012). Multivariate high‐frequency‐based volatility (heavy) models. Journal of Applied Econometrics, 27(6), 907–933.
Paper not yet in RePEc: Add citation now
Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. The Journal of Business, 53(1), 61–65.
Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics, 160(1), 246–256.
Shephard, N., & Sheppard, K. (2010). Realising the future: Forecasting with high‐frequency‐based volatility (heavy) models. Journal of Applied Econometrics, 25(2), 197–231.
Zhang, L., Mykland, P. A., & Aït‐Sahalia, Y. (2005). A tale of two time scales: Determining integrated volatility with noisy high‐frequency data. Journal of the American Statistical Association, 100(472), 1394–1411.