- Acerbi, C., & Szekely, B. (2014). Backtesting expected shortfall. Risk, 27(11), 76–81.
Paper not yet in RePEc: Add citation now
Acerbi, C., & Tasche, D. (2002). On the coherence of expected shortfall. Journal of Banking & Finance, 26(7), 1487–1503. https://doi.org/10.1016/S0378-4266(02)00283-2.
Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228. https://doi.org/10.1111/1467-9965.00068.
Baumeister, C., Guérin, P., & Kilian, L. (2015). Do high‐frequency financial data help forecast oil prices? The MIDAS touch at work. International Journal of Forecasting, 31(2), 238–252. https://doi.org/10.1016/j.ijforecast.2014.06.005.
Bhattacharyay, B. N. (2013). Determinants of bond market development in Asia. Journal of Asian Economics, 24, 124–137. https://doi.org/10.1016/j.asieco.2012.11.002.
Campbell, J. Y. (1991). A variance decomposition for stock returns. Economic Journal, 101(405), 157–179. https://doi.org/10.2307/2233809.
Chen, H., Chow, K., & Tillmann, P. (2017). The effectiveness of monetary policy in China: Evidence from a Qual VAR. China Economic Review, 43, 216–231. https://doi.org/10.1016/j.chieco.2017.02.006.
Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic Review, 39(4), 841–862. https://doi.org/10.2307/2527341.
Christoffersen, P., Errunza, V., Jacobs, K., & Jin, X. (2014). Correlation dynamics and international diversification benefits. International Journal of Forecasting, 30(3), 807–824. https://doi.org/10.1016/j.ijforecast.2014.01.001.
Colacito, R., Engle, R. F., & Ghysels, E. (2011). A component model for dynamic correlations. Journal of Econometrics, 164(1), 45–59. https://doi.org/10.1016/j.jeconom.2011.02.013.
- Du, Z., & Escanciano, J. C. (2016). Backtesting expected shortfall: Accounting for tail risk. Management Science, 63(4), 940–958.
Paper not yet in RePEc: Add citation now
- Efron, B. (1991). Regression percentiles using asymmetric squared error loss. Statistica Sinica, 1(1), 93–125.
Paper not yet in RePEc: Add citation now
Engle, R. F., & Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics, 22(4), 367–381. https://doi.org/10.1198/073500104000000370.
Engle, R. F., Ghysels, E., & Sohn, B. (2013). Stock market volatility and macroeconomic fundamentals. Review of Economics and Statistics, 95(3), 776–797. https://doi.org/10.1162/REST_a_00300.
Esposito, F. P., & Cummins, M. (2016). Multiple hypothesis testing of market risk forecasting models. Journal of Forecasting, 35(5), 381–399. https://doi.org/10.1002/for.2381.
- Fissler, T., & Ziegel, J. F. (2016). Higher order elicitability and Osband's principle. The Annals of Statistics, 44(4), 1680–1707.
Paper not yet in RePEc: Add citation now
- Foroni, C., Ghysels, E., & Marcellino, M. (2013). Mixed‐frequency vector autoregressive models. Advances in Econometrics, 32, 247–272. https://doi.org/10.1108/S0731-9053(2013)0000031007.
Paper not yet in RePEc: Add citation now
Foroni, C., Marcellino, M., & Schumacher, C. (2015). Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials. Journal of the Royal Statistical Society: Series A, 178(1), 57–82. https://doi.org/10.1111/rssa.12043.
Gatfaoui, H. (2013). Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets. Economic Modelling, 30, 776–791. https://doi.org/10.1016/j.econmod.2012.09.043.
Gerlach, R., & Wang, C. (2020). Semi‐parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures. International Journal of Forecasting, 36(2), 489–506. https://doi.org/10.1016/j.ijforecast.2019.07.003.
- Ghysels, E., & Valkanov, R. (2011). Forecasting volatility with MIDAS. USA: Oxford University Press.
Paper not yet in RePEc: Add citation now
Ghysels, E., Kvedaras, V., & Zemlys, V. (2016). Mixed frequency data sampling regression models: The R package midasr. Journal of Statistical Software, 72, 1–35.
Ghysels, E., Plazzi, A., & Valkanov, R. (2016). Why invest in emerging markets? The role of conditional return asymmetry. The Journal of Finance, 71(5), 2145–2192. https://doi.org/10.1111/jofi.12420.
- Ghysels, E., Santa‐Clara, P., & Valkanov, R. (2005). There is a risk‐return trade‐off after all. Journal of Financial Economics, 76(3), 509–548. https://doi.org/10.1016/j.jfineco.2004.03.008.
Paper not yet in RePEc: Add citation now
Ghysels, E., Santa‐Clara, P., & Valkanov, R. (2006). Predicting volatility: Getting the most out of return data sampled at different frequencies. Journal of Econometrics, 131(1), 59–95.
Ghysels, E., Sinko, A., & Valkanov, R. (2007). MIDAS regressions: Further results and new directions. Econometric Reviews, 26(1), 53–90. https://doi.org/10.1080/07474930600972467.
Gneiting, T. (2011). Making and evaluating point forecasts. Journal of the American Statistical Association, 106(494), 746–762. https://doi.org/10.1198/jasa.2011.r10138.
Guo, F., Hu, J., & Jiang, M. (2013). Monetary shocks and asymmetric effects in an emerging stock market: The case of China. Economic Modelling, 32, 532–538. https://doi.org/10.1016/j.econmod.2013.02.032.
Hall, R. E. (1988). Intertemporal substitution in consumption. Journal of Political Economy, 96(2), 339–357. https://doi.org/10.1086/261539.
Hansen, P. R., Huang, Z., & Shek, H. H. (2012). Realized GARCH: A joint model for returns and realized measures of volatility. Journal of Applied Econometrics, 27(6), 877–906. https://doi.org/10.1002/jae.1234.
He, D., & Wang, H. (2012). Dual‐track interest rates and the conduct of monetary policy in China. China Economic Review, 23(4), 928–947. https://doi.org/10.1016/j.chieco.2012.04.013.
Kim, H. H., & Swanson, N. R. (2018). Methods for backcasting, nowcasting and forecasting using factor‐MIDAS: With an application to Korean GDP. Journal of Forecasting, 37(3), 281–302. https://doi.org/10.1002/for.2499.
- Lima, L. R., Meng, F., & Godeiro, L. (2020). Quantile forecasting with mixed‐frequency data. International Journal of Forecasting, 36(3), 1149–1162. https://doi.org/10.1016/j.ijforecast.2018.09.011.
Paper not yet in RePEc: Add citation now
Liu, L.‐G., & Zhang, W. (2010). A new Keynesian model for analysing monetary policy in mainland China. Journal of Asian Economics, 21(6), 540–551. https://doi.org/10.1016/j.asieco.2010.07.004.
- Maas, B. (2020). Short‐term forecasting of the US unemployment rate. Journal of Forecasting, 39(3), 394–411. https://doi.org/10.1002/for.2630.
Paper not yet in RePEc: Add citation now
McNeil, A. J., & Frey, R. (2000). Estimation of tail‐related risk measures for heteroscedastic financial time series: An extreme value approach. Journal of Empirical Finance, 7(3–4), 271–300. https://doi.org/10.1016/S0927-5398(00)00012-8.
Mukherjee, T. K., & Naka, A. (1995). Dynamic relations between macroeconomic variables and the Japanese stock market: An application of a vector error correction model. Journal of Financial Research, 18(2), 223–237. https://doi.org/10.1111/j.1475-6803.1995.tb00563.x.
Nadarajah, S., Zhang, B., & Chan, S. (2014). Estimation methods for expected shortfall. Quantitative Finance, 14(2), 271–291. https://doi.org/10.1080/14697688.2013.816767.
Nolde, N., & Ziegel, J. F. (2017). Elicitability and backtesting: Perspectives for banking regulation. The Annals of Applied Statistics, 11(4), 1833–1874.
- Osband, K. (1985). Providing incentives for better cost forecasting. Ph.D. thesis, University of California, Berkeley.
Paper not yet in RePEc: Add citation now
Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics, 160(1), 246–256. https://doi.org/10.1016/j.jeconom.2010.03.034.
Patton, A. J., Ziegel, J. F., & Chen, R. (2019). Dynamic semiparametric models for expected shortfall (and value‐at‐risk). Journal of Econometrics, 211, 388–413. https://doi.org/10.1016/j.jeconom.2018.10.008.
Tan, Y., Ji, Y., & Huang, Y. (2016). Completing China's interest rate liberalization. China & World Economy, 24(2), 1–22. https://doi.org/10.1111/cwe.12148.
Taylor, J. W. (2008). Estimating value at risk and expected shortfall using expectiles. Journal of Financial Econometrics, 6(2), 231–252.
Taylor, J. W. (2019). Forecasting value at risk and expected shortfall using a semiparametric approach based on the asymmetric Laplace distribution. Journal of Business & Economic Statistics, 37(1), 121–133. https://doi.org/10.1080/07350015.2017.1281815.
- Wang, R., & Li, L. (2020). Dynamic relationship between the stock market and macroeconomy in China (1995–2018): New evidence from the continuous wavelet analysis. Economic research‐Ekonomska istraživanja, 33(1), 521–539.
Paper not yet in RePEc: Add citation now
Worthington, A., & Higgs, H. (2004). Transmission of equity returns and volatility in Asian developed and emerging markets: A multivariate GARCH analysis. International Journal of Finance and Economics, 9(1), 71–80. https://doi.org/10.1002/ijfe.222.
Xu, Q., Chen, L., Jiang, C., & Yu, K. (2020). Mixed data sampling expectile regression with applications to measuring financial risk. Economic Modelling, 91, 469–486. https://doi.org/10.1016/j.econmod.2020.06.018.
Xu, Q., Chen, L., Jiang, C., & Yuan, J. (2018). Measuring systemic risk of the banking industry in China: A DCC‐MIDAS‐t approach. Pacific‐Basin Finance Journal, 51, 13–31. https://doi.org/10.1016/j.pacfin.2018.05.009.
Xu, Q., Zhuo, X., Jiang, C., Liu, X., & Liu, Y. (2018). Group penalized unrestricted mixed data sampling model with application to forecasting US GDP growth. Economic Modelling, 75, 221–236. https://doi.org/10.1016/j.econmod.2018.06.021.
- Yamai, Y., & Yoshiba, T. (2002). On the validity of value‐at‐risk: Comparative analyses with expected shortfall. Monetary and Economic Studies, 20(1), 57–85.
Paper not yet in RePEc: Add citation now