- Ala'raj, M., & Abbod, M. F. (2016). Classifiers consensus system approach for credit scoring. Knowledge‐Based Systems, 104, 89–105. https://doi.org/10.1016/j.knosys.2016.04.013.
Paper not yet in RePEc: Add citation now
- Ala'raj, M., Abbod, M. F., & Majdalawieh, M. (2021). Modelling customers credit card behaviour using bidirectional LSTM neural networks. Journal of Big Data, 8, 1–27.
Paper not yet in RePEc: Add citation now
Bellotti, T., & Crook, J. (2009). Credit scoring with macroeconomic variables using survival analysis. Journal of the Operational Research Society, 60, 1699–1707. https://doi.org/10.1057/jors.2008.130.
- Benavoli, A., Corani, G., Mangili, F., Zaffalon, M., & Ruggeri, F. (2014). A Bayesian Wilcoxon signed‐rank test based on the Dirichlet process. International Conference on Machine Learning. PMLR. 1026–1034.
Paper not yet in RePEc: Add citation now
- Bensic, M., Sarlija, N., & Zekic‐Susac, M. (2005). Modelling small‐business credit scoring by using logistic regression, neural networks and decision trees. Intelligent Systems in Accounting, Finance & Management, 13, 133–150. https://doi.org/10.1002/isaf.261.
Paper not yet in RePEc: Add citation now
Berg, T., Burg, V., Gombović, A., & Puri, M. (2020). On the rise of fintechs: Credit scoring using digital footprints. The Review of Financial Studies, 33, 2845–2897. https://doi.org/10.1093/rfs/hhz099.
- Bergstra, J., Yamins, D., & Cox, D. D. (2013). Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms. Proceedings of the 12th Python in Science Conference. 13–20.
Paper not yet in RePEc: Add citation now
Bertsch, C., Hull, I., Qi, Y., & Zhang, X. (2020). Bank misconduct and online lending. Journal of Banking & Finance, 116, 105822. https://doi.org/10.1016/j.jbankfin.2020.105822.
- Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324.
Paper not yet in RePEc: Add citation now
Buchak, G., Matvos, G., Piskorski, T., & Seru, A. (2018). Fintech, regulatory arbitrage, and the rise of shadow banks. Journal of Financial Economics, 130, 453–483. https://doi.org/10.1016/j.jfineco.2018.03.011.
- Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. ACM. 785–794.
Paper not yet in RePEc: Add citation now
- Dastile, X., Celik, T., & Potsane, M. (2020). Statistical and machine learning models in credit scoring: A systematic literature survey. Applied Soft Computing, 91, 106263.
Paper not yet in RePEc: Add citation now
De Andrade, F. W. M., & Thomas, L. (2007). Structural models in consumer credit. European Journal of Operational Research, 183, 1569–1581. https://doi.org/10.1016/j.ejor.2006.07.049.
- Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7, 1–30.
Paper not yet in RePEc: Add citation now
- Di Maggio, M., & Yao, V. (2020). Fintech borrowers: Lax‐screening or cream‐skimming? Available at SSRN 3224957.
Paper not yet in RePEc: Add citation now
Dirick, L., Bellotti, T., Claeskens, G., & Baesens, B. (2019). Macro‐economic factors in credit risk calculations: Including time‐varying covariates in mixture cure models. Journal of Business & Economic Statistics, 37, 40–53. https://doi.org/10.1080/07350015.2016.1260471.
Djeundje, V. B., & Crook, J. (2018). Incorporating heterogeneity and macroeconomic variables into multi‐state delinquency models for credit cards. European Journal of Operational Research, 271, 697–709. https://doi.org/10.1016/j.ejor.2018.05.040.
- Djeundje, V. B., Crook, J., Calabrese, R., & Hamid, M. (2020). Enhancing credit scoring with alternative data. Expert Systems with Applications, 163, 113766.
Paper not yet in RePEc: Add citation now
- Dorogush, A.V., Ershov, V., & Gulin, A. (2018). CatBoost: Gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363.
Paper not yet in RePEc: Add citation now
Einav, L., Jenkins, M., & Levin, J. (2013). The impact of credit scoring on consumer lending. The Rand Journal of Economics, 44, 249–274. https://doi.org/10.1111/1756-2171.12019.
Eisenbeis, R. A. (1977). Pitfalls in the application of discriminant analysis in business, finance, and economics. The Journal of Finance, 32, 875–900. https://doi.org/10.1111/j.1540-6261.1977.tb01995.x.
- Feng, X., Xiao, Z., Zhong, B., Dong, Y., & Qiu, J. (2019). Dynamic weighted ensemble classification for credit scoring using Markov chain. Applied Intelligence, 49, 555–568. https://doi.org/10.1007/s10489-018-1253-8.
Paper not yet in RePEc: Add citation now
- Feng, X., Xiao, Z., Zhong, B., Qiu, J., & Dong, Y. (2018). Dynamic ensemble classification for credit scoring using soft probability. Applied Soft Computing, 65, 139–151. https://doi.org/10.1016/j.asoc.2018.01.021.
Paper not yet in RePEc: Add citation now
- Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811.
Paper not yet in RePEc: Add citation now
- Friedman, J. H. (2000). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232. https://doi.org/10.1214/aos/1013203451.
Paper not yet in RePEc: Add citation now
- García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180, 2044–2064. https://doi.org/10.1016/j.ins.2009.12.010.
Paper not yet in RePEc: Add citation now
- Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63, 3–42. https://doi.org/10.1007/s10994-006-6226-1.
Paper not yet in RePEc: Add citation now
- Gordy, M. B. (2003). A risk‐factor model foundation for ratings‐based bank capital rules. Journal of Financial Intermediation, 12, 199–232. https://doi.org/10.1016/S1042-9573(03)00040-8.
Paper not yet in RePEc: Add citation now
Gunnarsson, B. R., Vanden Broucke, S., Baesens, B., Óskarsdóttir, M., & Lemahieu, W. (2021). Deep learning for credit scoring: Do or don't? European Journal of Operational Research, 295(1), 292–305.
- Hand, D. J. (2009). Measuring classifier performance: A coherent alternative to the area under the ROC curve. Machine Learning, 77, 103–123. https://doi.org/10.1007/s10994-009-5119-5.
Paper not yet in RePEc: Add citation now
- He, H., Zhang, W., & Zhang, S. (2018). A novel ensemble method for credit scoring: Adaption of different imbalance ratios. Expert Systems with Applications, 98, 105–117. https://doi.org/10.1016/j.eswa.2018.01.012.
Paper not yet in RePEc: Add citation now
- He, N., Yongqiao, W., Tao, J., & Zhaoyu, C. (2022). Self‐adaptive bagging approach to credit rating. Technological Forecasting and Social Change, 175, 121371. https://doi.org/10.1016/j.techfore.2021.121371.
Paper not yet in RePEc: Add citation now
Hurlin, C., Leymarie, J., & Patin, A. (2018). Loss functions for loss given default model comparison. European Journal of Operational Research, 268, 348–360. https://doi.org/10.1016/j.ejor.2018.01.020.
- Jadhav, S., He, H., & Jenkins, K. (2018). Information gain directed genetic algorithm wrapper feature selection for credit rating. Applied Soft Computing, 69, 541–553. https://doi.org/10.1016/j.asoc.2018.04.033.
Paper not yet in RePEc: Add citation now
- Junior, L. M., Nardini, F. M., Renso, C., Trani, R., & Macedo, J. A. (2020). A novel approach to define the local region of dynamic selection techniques in imbalanced credit scoring problems. Expert Systems with Applications, 152, 113351.
Paper not yet in RePEc: Add citation now
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.‐Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30, 3149–3157.
Paper not yet in RePEc: Add citation now
- Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian new statistics: Hypothesis testing, estimation, meta‐analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 25, 178–206. https://doi.org/10.3758/s13423-016-1221-4.
Paper not yet in RePEc: Add citation now
- Lee, E., & Lee, B. (2012). Herding behavior in online P2P lending: An empirical investigation. Electronic Commerce Research and Applications, 11, 495–503. https://doi.org/10.1016/j.elerap.2012.02.001.
Paper not yet in RePEc: Add citation now
- Lessmann, S., Baesens, B., Seow, H.‐V., & Thomas, L. C. (2015). Benchmarking state‐of‐the‐art classification algorithms for credit scoring: An update of research. European Journal of Operational Research, 247, 124–136. https://doi.org/10.1016/j.ejor.2015.05.030.
Paper not yet in RePEc: Add citation now
- Li, K., Zhou, F., Li, Z., Li, W., & Shen, F. (2021). A semi‐parametric ensemble model for profit evaluation and investment decisions in online consumer loans with prepayments. Applied Soft Computing, 107, 107485. https://doi.org/10.1016/j.asoc.2021.107485.
Paper not yet in RePEc: Add citation now
- Liu, W., Fan, H., & Xia, M. (2021). Step‐wise multi‐grained augmented gradient boosting decision trees for credit scoring. Engineering Applications of Artificial Intelligence, 97, 104036. https://doi.org/10.1016/j.engappai.2020.104036.
Paper not yet in RePEc: Add citation now
Lohmann, C., & Ohliger, T. (2019). The total cost of misclassification in credit scoring: A comparison of generalized linear models and generalized additive models. Journal of Forecasting, 38, 375–389. https://doi.org/10.1002/for.2545.
- Maldonado, S., Peters, G., & Weber, R. (2020). Credit scoring using three‐way decisions with probabilistic rough sets. Information Sciences, 507, 700–714. https://doi.org/10.1016/j.ins.2018.08.001.
Paper not yet in RePEc: Add citation now
- Malekipirbazari, M., & Aksakalli, V. (2015). Risk assessment in social lending via random forests. Expert Systems with Applications, 42, 4621–4631. https://doi.org/10.1016/j.eswa.2015.02.001.
Paper not yet in RePEc: Add citation now
- Messai, A. S., & Jouini, F. (2013). Micro and macro determinants of non‐performing loans. International Journal of Economics and Financial Issues, 3, 852–860.
Paper not yet in RePEc: Add citation now
- Moosa, I. A. (2010). Basel II as a casualty of the global financial crisis. Journal of Banking Regulation, 11, 95–114. https://doi.org/10.1057/jbr.2010.2.
Paper not yet in RePEc: Add citation now
- Óskarsdóttir, M., Bravo, C., Sarraute, C., Vanthienen, J., & Baesens, B. (2019). The value of big data for credit scoring: Enhancing financial inclusion using mobile phone data and social network analytics. Applied Soft Computing, 74, 26–39. https://doi.org/10.1016/j.asoc.2018.10.004.
Paper not yet in RePEc: Add citation now
Ozili, P. K. (2018). Impact of digital finance on financial inclusion and stability. Borsa Istanbul Review, 18, 329–340. https://doi.org/10.1016/j.bir.2017.12.003.
- Pławiak, P., Abdar, M., & Acharya, U. R. (2019). Application of new deep genetic cascade ensemble of SVM classifiers to predict the Australian credit scoring. Applied Soft Computing, 84, 105740. https://doi.org/10.1016/j.asoc.2019.105740.
Paper not yet in RePEc: Add citation now
- Pławiak, P., Abdar, M., Pławiak, J., Makarenkov, V., & Acharya, U. R. (2020). DGHNL: A new deep genetic hierarchical network of learners for prediction of credit scoring. Information Sciences, 516, 401–418. https://doi.org/10.1016/j.ins.2019.12.045.
Paper not yet in RePEc: Add citation now
- Roa, L., Correa‐Bahnsen, A., Suarez, G., Cortés‐Tejada, F., Luque, M. A., & Bravo, C. (2021). Super‐app behavioral patterns in credit risk models: Financial, statistical and regulatory implications. Expert Systems with Applications, 169, 114486. https://doi.org/10.1016/j.eswa.2020.114486.
Paper not yet in RePEc: Add citation now
Schotten, P. C., & Morais, D. C. (2019). A group decision model for credit granting in the financial market. Financial Innovation, 5, 1–19. https://doi.org/10.1186/s40854-019-0126-4.
- Serrano‐Cinca, C., & Gutiérrez‐Nieto, B. (2016). The use of profit scoring as an alternative to credit scoring systems in peer‐to‐peer (P2P) lending. Decision Support Systems, 89, 113–122. https://doi.org/10.1016/j.dss.2016.06.014.
Paper not yet in RePEc: Add citation now
- Shen, F., Wang, R., & Shen, Y. (2020). A cost‐sensitive logistic regression credit scoring model based on multi‐objective optimization approach. Technological and Economic Development of Economy, 26(2), 405–429.
Paper not yet in RePEc: Add citation now
- Shen, F., Zhao, X., Kou, G., & Alsaadi, F. E. (2021). A new deep learning ensemble credit risk evaluation model with an improved synthetic minority oversampling technique. Applied Soft Computing, 98, 106852. https://doi.org/10.1016/j.asoc.2020.106852.
Paper not yet in RePEc: Add citation now
- Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems, 25, 2951–2959.
Paper not yet in RePEc: Add citation now
Thomas, L. C. (2000). A survey of credit and behavioural scoring: Forecasting financial risk of lending to consumers. International Journal of Forecasting, 16, 149–172. https://doi.org/10.1016/S0169-2070(00)00034-0.
- Tian, Y., Yong, Z., & Luo, J. (2018). A new approach for reject inference in credit scoring using kernel‐free fuzzy quadratic surface support vector machines. Applied Soft Computing, 73, 96–105. https://doi.org/10.1016/j.asoc.2018.08.021.
Paper not yet in RePEc: Add citation now
- Wang, C., Han, D., Liu, Q., & Luo, S. (2018). A deep learning approach for credit scoring of peer‐to‐peer lending using attention mechanism LSTM. IEEE Access, 7, 2161–2168. https://doi.org/10.1109/ACCESS.2018.2887138.
Paper not yet in RePEc: Add citation now
Wang, H., Kou, G., & Peng, Y. (2021). Multi‐class misclassification cost matrix for credit ratings in peer‐to‐peer lending. Journal of the Operational Research Society, 72, 923–934. https://doi.org/10.1080/01605682.2019.1705193.
- Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1, 67–82. https://doi.org/10.1109/4235.585893.
Paper not yet in RePEc: Add citation now
- Xia, Y., He, L., Li, Y., Fu, Y., & Xu, Y. (2021). A dynamic credit scoring model based on survival gradient boosting decision tree approach. Technological and Economic Development of Economy, 27, 96–119.
Paper not yet in RePEc: Add citation now
- Xia, Y., He, L., Li, Y., Liu, N., & Ding, Y. (2020). Predicting loan default in peer‐to‐peer lending using narrative data. Journal of Forecasting, 39, 260–280. https://doi.org/10.1002/for.2625.
Paper not yet in RePEc: Add citation now
- Xia, Y., Li, Y., He, L., Xu, Y., & Meng, Y. (2021). Incorporating multilevel macroeconomic variables into credit scoring for online consumer lending. Electronic Commerce Research and Applications, 49, 101095. https://doi.org/10.1016/j.elerap.2021.101095.
Paper not yet in RePEc: Add citation now
- Xia, Y., Liu, C., & Liu, N. (2017). Cost‐sensitive boosted tree for loan evaluation in peer‐to‐peer lending. Electronic Commerce Research and Applications, 24, 30–49. https://doi.org/10.1016/j.elerap.2017.06.004.
Paper not yet in RePEc: Add citation now
- Xia, Y., Liu, C., Da, B., & Xie, F. (2018). A novel heterogeneous ensemble credit scoring model based on bstacking approach. Expert Systems with Applications, 93, 182–199. https://doi.org/10.1016/j.eswa.2017.10.022.
Paper not yet in RePEc: Add citation now
- Xia, Y., Liu, C., Li, Y., & Liu, N. (2017). A boosted decision tree approach using Bayesian hyper‐parameter optimization for credit scoring. Expert Systems with Applications, 78, 225–241. https://doi.org/10.1016/j.eswa.2017.02.017.
Paper not yet in RePEc: Add citation now
- Xia, Y., Yang, X., & Zhang, Y. (2018). A rejection inference technique based on contrastive pessimistic likelihood estimation for P2P lending. Electronic Commerce Research and Applications, 30, 111–124. https://doi.org/10.1016/j.elerap.2018.05.011.
Paper not yet in RePEc: Add citation now
Xia, Y., Zhao, J., He, L., Li, Y., & Yang, X. (2021). Forecasting loss given default for peer‐to‐peer loans via heterogeneous stacking ensemble approach. International Journal of Forecasting, 37, 1590–1613. https://doi.org/10.1016/j.ijforecast.2021.03.002.
Xu, D., Zhang, X., & Feng, H. (2019). Generalized fuzzy soft sets theory‐based novel hybrid ensemble credit scoring model. International Journal of Finance and Economics, 24, 903–921. https://doi.org/10.1002/ijfe.1698.
Yu, L., Li, X., Tang, L., Zhang, Z., & Kou, G. (2015). Social credit: A comprehensive literature review. Financial Innovation, 1, 1–18.
- Yu, L., Wang, S., & Lai, K. K. (2008). Credit risk assessment with a multistage neural network ensemble learning approach. Expert Systems with Applications, 34, 1434–1444. https://doi.org/10.1016/j.eswa.2007.01.009.
Paper not yet in RePEc: Add citation now
- Zhang, W., He, H., & Zhang, S. (2019). A novel multi‐stage hybrid model with enhanced multi‐population niche genetic algorithm: An application in credit scoring. Expert Systems with Applications, 121, 221–232. https://doi.org/10.1016/j.eswa.2018.12.020.
Paper not yet in RePEc: Add citation now
- Zhang, W., Yang, D., Zhang, S., Ablanedo‐Rosas, J. H., Wu, X., & Lou, Y. (2021). A novel multi‐stage ensemble model with enhanced outlier adaptation for credit scoring. Expert Systems with Applications, 165, 113872. https://doi.org/10.1016/j.eswa.2020.113872.
Paper not yet in RePEc: Add citation now
- Zhou, Z.‐H. (2012). Ensemble methods: Foundations and algorithms. CRC Press.
Paper not yet in RePEc: Add citation now
- Zhou, Z.‐H., & Feng, J. (2019). Deep forest. National Science Review, 6, 74–86. https://doi.org/10.1093/nsr/nwy108.
Paper not yet in RePEc: Add citation now