create a website

Deep learning meets decision trees: An application of a heterogeneous deep forest approach in credit scoring for online consumer lending. (2022). Xia, Yufei ; Li, Yinguo ; Chen, Xueyuan ; Guo, Xinyi.
In: Journal of Forecasting.
RePEc:wly:jforec:v:41:y:2022:i:8:p:1669-1690.

Full description at Econpapers || Download paper

Cited: 4

Citations received by this document

Cites: 76

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Integration of CNN Models and Machine Learning Methods in Credit Score Classification: 2D Image Transformation and Feature Extraction. (2025). Solak, Bilal ; Toaar, Mesut ; Gr, Yunus Emre.
    In: Computational Economics.
    RePEc:kap:compec:v:65:y:2025:i:5:d:10.1007_s10614-025-10893-5.

    Full description at Econpapers || Download paper

  2. Can internal regulatory technology (RegTech) mitigate bank credit risk? Evidence from the banking sector in China. (2025). He, Lingyun ; Sun, Naili ; Zheng, Qiong ; Xia, Yufei ; Shi, Zhengxu.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:75:y:2025:i:c:s0275531925000364.

    Full description at Econpapers || Download paper

  3. Interpretable credit scoring based on an additive extreme gradient boosting. (2025). Lan, Xingyu ; Zou, Yao ; Xia, Meng.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002292.

    Full description at Econpapers || Download paper

  4. What determines consumers’ purchasing behavioral intention on social commerce platforms: introducing consumer credit to TPB. (2024). Zhang, Dehua ; Lou, Sha.
    In: Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development.
    RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-04210-z.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Ala'raj, M., & Abbod, M. F. (2016). Classifiers consensus system approach for credit scoring. Knowledge‐Based Systems, 104, 89–105. https://doi.org/10.1016/j.knosys.2016.04.013.
    Paper not yet in RePEc: Add citation now
  2. Ala'raj, M., Abbod, M. F., & Majdalawieh, M. (2021). Modelling customers credit card behaviour using bidirectional LSTM neural networks. Journal of Big Data, 8, 1–27.
    Paper not yet in RePEc: Add citation now
  3. Bellotti, T., & Crook, J. (2009). Credit scoring with macroeconomic variables using survival analysis. Journal of the Operational Research Society, 60, 1699–1707. https://doi.org/10.1057/jors.2008.130.

  4. Benavoli, A., Corani, G., Mangili, F., Zaffalon, M., & Ruggeri, F. (2014). A Bayesian Wilcoxon signed‐rank test based on the Dirichlet process. International Conference on Machine Learning. PMLR. 1026–1034.
    Paper not yet in RePEc: Add citation now
  5. Bensic, M., Sarlija, N., & Zekic‐Susac, M. (2005). Modelling small‐business credit scoring by using logistic regression, neural networks and decision trees. Intelligent Systems in Accounting, Finance & Management, 13, 133–150. https://doi.org/10.1002/isaf.261.
    Paper not yet in RePEc: Add citation now
  6. Berg, T., Burg, V., Gombović, A., & Puri, M. (2020). On the rise of fintechs: Credit scoring using digital footprints. The Review of Financial Studies, 33, 2845–2897. https://doi.org/10.1093/rfs/hhz099.

  7. Bergstra, J., Yamins, D., & Cox, D. D. (2013). Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms. Proceedings of the 12th Python in Science Conference. 13–20.
    Paper not yet in RePEc: Add citation now
  8. Bertsch, C., Hull, I., Qi, Y., & Zhang, X. (2020). Bank misconduct and online lending. Journal of Banking & Finance, 116, 105822. https://doi.org/10.1016/j.jbankfin.2020.105822.

  9. Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324.
    Paper not yet in RePEc: Add citation now
  10. Buchak, G., Matvos, G., Piskorski, T., & Seru, A. (2018). Fintech, regulatory arbitrage, and the rise of shadow banks. Journal of Financial Economics, 130, 453–483. https://doi.org/10.1016/j.jfineco.2018.03.011.

  11. Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. ACM. 785–794.
    Paper not yet in RePEc: Add citation now
  12. Dastile, X., Celik, T., & Potsane, M. (2020). Statistical and machine learning models in credit scoring: A systematic literature survey. Applied Soft Computing, 91, 106263.
    Paper not yet in RePEc: Add citation now
  13. De Andrade, F. W. M., & Thomas, L. (2007). Structural models in consumer credit. European Journal of Operational Research, 183, 1569–1581. https://doi.org/10.1016/j.ejor.2006.07.049.

  14. Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7, 1–30.
    Paper not yet in RePEc: Add citation now
  15. Di Maggio, M., & Yao, V. (2020). Fintech borrowers: Lax‐screening or cream‐skimming? Available at SSRN 3224957.
    Paper not yet in RePEc: Add citation now
  16. Dirick, L., Bellotti, T., Claeskens, G., & Baesens, B. (2019). Macro‐economic factors in credit risk calculations: Including time‐varying covariates in mixture cure models. Journal of Business & Economic Statistics, 37, 40–53. https://doi.org/10.1080/07350015.2016.1260471.

  17. Djeundje, V. B., & Crook, J. (2018). Incorporating heterogeneity and macroeconomic variables into multi‐state delinquency models for credit cards. European Journal of Operational Research, 271, 697–709. https://doi.org/10.1016/j.ejor.2018.05.040.

  18. Djeundje, V. B., Crook, J., Calabrese, R., & Hamid, M. (2020). Enhancing credit scoring with alternative data. Expert Systems with Applications, 163, 113766.
    Paper not yet in RePEc: Add citation now
  19. Dorogush, A.V., Ershov, V., & Gulin, A. (2018). CatBoost: Gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363.
    Paper not yet in RePEc: Add citation now
  20. Einav, L., Jenkins, M., & Levin, J. (2013). The impact of credit scoring on consumer lending. The Rand Journal of Economics, 44, 249–274. https://doi.org/10.1111/1756-2171.12019.

  21. Eisenbeis, R. A. (1977). Pitfalls in the application of discriminant analysis in business, finance, and economics. The Journal of Finance, 32, 875–900. https://doi.org/10.1111/j.1540-6261.1977.tb01995.x.

  22. Feng, X., Xiao, Z., Zhong, B., Dong, Y., & Qiu, J. (2019). Dynamic weighted ensemble classification for credit scoring using Markov chain. Applied Intelligence, 49, 555–568. https://doi.org/10.1007/s10489-018-1253-8.
    Paper not yet in RePEc: Add citation now
  23. Feng, X., Xiao, Z., Zhong, B., Qiu, J., & Dong, Y. (2018). Dynamic ensemble classification for credit scoring using soft probability. Applied Soft Computing, 65, 139–151. https://doi.org/10.1016/j.asoc.2018.01.021.
    Paper not yet in RePEc: Add citation now
  24. Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811.
    Paper not yet in RePEc: Add citation now
  25. Friedman, J. H. (2000). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232. https://doi.org/10.1214/aos/1013203451.
    Paper not yet in RePEc: Add citation now
  26. García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180, 2044–2064. https://doi.org/10.1016/j.ins.2009.12.010.
    Paper not yet in RePEc: Add citation now
  27. Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63, 3–42. https://doi.org/10.1007/s10994-006-6226-1.
    Paper not yet in RePEc: Add citation now
  28. Gordy, M. B. (2003). A risk‐factor model foundation for ratings‐based bank capital rules. Journal of Financial Intermediation, 12, 199–232. https://doi.org/10.1016/S1042-9573(03)00040-8.
    Paper not yet in RePEc: Add citation now
  29. Gunnarsson, B. R., Vanden Broucke, S., Baesens, B., Óskarsdóttir, M., & Lemahieu, W. (2021). Deep learning for credit scoring: Do or don't? European Journal of Operational Research, 295(1), 292–305.

  30. Hand, D. J. (2009). Measuring classifier performance: A coherent alternative to the area under the ROC curve. Machine Learning, 77, 103–123. https://doi.org/10.1007/s10994-009-5119-5.
    Paper not yet in RePEc: Add citation now
  31. He, H., Zhang, W., & Zhang, S. (2018). A novel ensemble method for credit scoring: Adaption of different imbalance ratios. Expert Systems with Applications, 98, 105–117. https://doi.org/10.1016/j.eswa.2018.01.012.
    Paper not yet in RePEc: Add citation now
  32. He, N., Yongqiao, W., Tao, J., & Zhaoyu, C. (2022). Self‐adaptive bagging approach to credit rating. Technological Forecasting and Social Change, 175, 121371. https://doi.org/10.1016/j.techfore.2021.121371.
    Paper not yet in RePEc: Add citation now
  33. Hurlin, C., Leymarie, J., & Patin, A. (2018). Loss functions for loss given default model comparison. European Journal of Operational Research, 268, 348–360. https://doi.org/10.1016/j.ejor.2018.01.020.

  34. Jadhav, S., He, H., & Jenkins, K. (2018). Information gain directed genetic algorithm wrapper feature selection for credit rating. Applied Soft Computing, 69, 541–553. https://doi.org/10.1016/j.asoc.2018.04.033.
    Paper not yet in RePEc: Add citation now
  35. Junior, L. M., Nardini, F. M., Renso, C., Trani, R., & Macedo, J. A. (2020). A novel approach to define the local region of dynamic selection techniques in imbalanced credit scoring problems. Expert Systems with Applications, 152, 113351.
    Paper not yet in RePEc: Add citation now
  36. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.‐Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30, 3149–3157.
    Paper not yet in RePEc: Add citation now
  37. Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian new statistics: Hypothesis testing, estimation, meta‐analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 25, 178–206. https://doi.org/10.3758/s13423-016-1221-4.
    Paper not yet in RePEc: Add citation now
  38. Lee, E., & Lee, B. (2012). Herding behavior in online P2P lending: An empirical investigation. Electronic Commerce Research and Applications, 11, 495–503. https://doi.org/10.1016/j.elerap.2012.02.001.
    Paper not yet in RePEc: Add citation now
  39. Lessmann, S., Baesens, B., Seow, H.‐V., & Thomas, L. C. (2015). Benchmarking state‐of‐the‐art classification algorithms for credit scoring: An update of research. European Journal of Operational Research, 247, 124–136. https://doi.org/10.1016/j.ejor.2015.05.030.
    Paper not yet in RePEc: Add citation now
  40. Li, K., Zhou, F., Li, Z., Li, W., & Shen, F. (2021). A semi‐parametric ensemble model for profit evaluation and investment decisions in online consumer loans with prepayments. Applied Soft Computing, 107, 107485. https://doi.org/10.1016/j.asoc.2021.107485.
    Paper not yet in RePEc: Add citation now
  41. Liu, W., Fan, H., & Xia, M. (2021). Step‐wise multi‐grained augmented gradient boosting decision trees for credit scoring. Engineering Applications of Artificial Intelligence, 97, 104036. https://doi.org/10.1016/j.engappai.2020.104036.
    Paper not yet in RePEc: Add citation now
  42. Lohmann, C., & Ohliger, T. (2019). The total cost of misclassification in credit scoring: A comparison of generalized linear models and generalized additive models. Journal of Forecasting, 38, 375–389. https://doi.org/10.1002/for.2545.

  43. Maldonado, S., Peters, G., & Weber, R. (2020). Credit scoring using three‐way decisions with probabilistic rough sets. Information Sciences, 507, 700–714. https://doi.org/10.1016/j.ins.2018.08.001.
    Paper not yet in RePEc: Add citation now
  44. Malekipirbazari, M., & Aksakalli, V. (2015). Risk assessment in social lending via random forests. Expert Systems with Applications, 42, 4621–4631. https://doi.org/10.1016/j.eswa.2015.02.001.
    Paper not yet in RePEc: Add citation now
  45. Messai, A. S., & Jouini, F. (2013). Micro and macro determinants of non‐performing loans. International Journal of Economics and Financial Issues, 3, 852–860.
    Paper not yet in RePEc: Add citation now
  46. Moosa, I. A. (2010). Basel II as a casualty of the global financial crisis. Journal of Banking Regulation, 11, 95–114. https://doi.org/10.1057/jbr.2010.2.
    Paper not yet in RePEc: Add citation now
  47. Óskarsdóttir, M., Bravo, C., Sarraute, C., Vanthienen, J., & Baesens, B. (2019). The value of big data for credit scoring: Enhancing financial inclusion using mobile phone data and social network analytics. Applied Soft Computing, 74, 26–39. https://doi.org/10.1016/j.asoc.2018.10.004.
    Paper not yet in RePEc: Add citation now
  48. Ozili, P. K. (2018). Impact of digital finance on financial inclusion and stability. Borsa Istanbul Review, 18, 329–340. https://doi.org/10.1016/j.bir.2017.12.003.

  49. Pławiak, P., Abdar, M., & Acharya, U. R. (2019). Application of new deep genetic cascade ensemble of SVM classifiers to predict the Australian credit scoring. Applied Soft Computing, 84, 105740. https://doi.org/10.1016/j.asoc.2019.105740.
    Paper not yet in RePEc: Add citation now
  50. Pławiak, P., Abdar, M., Pławiak, J., Makarenkov, V., & Acharya, U. R. (2020). DGHNL: A new deep genetic hierarchical network of learners for prediction of credit scoring. Information Sciences, 516, 401–418. https://doi.org/10.1016/j.ins.2019.12.045.
    Paper not yet in RePEc: Add citation now
  51. Roa, L., Correa‐Bahnsen, A., Suarez, G., Cortés‐Tejada, F., Luque, M. A., & Bravo, C. (2021). Super‐app behavioral patterns in credit risk models: Financial, statistical and regulatory implications. Expert Systems with Applications, 169, 114486. https://doi.org/10.1016/j.eswa.2020.114486.
    Paper not yet in RePEc: Add citation now
  52. Schotten, P. C., & Morais, D. C. (2019). A group decision model for credit granting in the financial market. Financial Innovation, 5, 1–19. https://doi.org/10.1186/s40854-019-0126-4.

  53. Serrano‐Cinca, C., & Gutiérrez‐Nieto, B. (2016). The use of profit scoring as an alternative to credit scoring systems in peer‐to‐peer (P2P) lending. Decision Support Systems, 89, 113–122. https://doi.org/10.1016/j.dss.2016.06.014.
    Paper not yet in RePEc: Add citation now
  54. Shen, F., Wang, R., & Shen, Y. (2020). A cost‐sensitive logistic regression credit scoring model based on multi‐objective optimization approach. Technological and Economic Development of Economy, 26(2), 405–429.
    Paper not yet in RePEc: Add citation now
  55. Shen, F., Zhao, X., Kou, G., & Alsaadi, F. E. (2021). A new deep learning ensemble credit risk evaluation model with an improved synthetic minority oversampling technique. Applied Soft Computing, 98, 106852. https://doi.org/10.1016/j.asoc.2020.106852.
    Paper not yet in RePEc: Add citation now
  56. Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems, 25, 2951–2959.
    Paper not yet in RePEc: Add citation now
  57. Thomas, L. C. (2000). A survey of credit and behavioural scoring: Forecasting financial risk of lending to consumers. International Journal of Forecasting, 16, 149–172. https://doi.org/10.1016/S0169-2070(00)00034-0.

  58. Tian, Y., Yong, Z., & Luo, J. (2018). A new approach for reject inference in credit scoring using kernel‐free fuzzy quadratic surface support vector machines. Applied Soft Computing, 73, 96–105. https://doi.org/10.1016/j.asoc.2018.08.021.
    Paper not yet in RePEc: Add citation now
  59. Wang, C., Han, D., Liu, Q., & Luo, S. (2018). A deep learning approach for credit scoring of peer‐to‐peer lending using attention mechanism LSTM. IEEE Access, 7, 2161–2168. https://doi.org/10.1109/ACCESS.2018.2887138.
    Paper not yet in RePEc: Add citation now
  60. Wang, H., Kou, G., & Peng, Y. (2021). Multi‐class misclassification cost matrix for credit ratings in peer‐to‐peer lending. Journal of the Operational Research Society, 72, 923–934. https://doi.org/10.1080/01605682.2019.1705193.

  61. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1, 67–82. https://doi.org/10.1109/4235.585893.
    Paper not yet in RePEc: Add citation now
  62. Xia, Y., He, L., Li, Y., Fu, Y., & Xu, Y. (2021). A dynamic credit scoring model based on survival gradient boosting decision tree approach. Technological and Economic Development of Economy, 27, 96–119.
    Paper not yet in RePEc: Add citation now
  63. Xia, Y., He, L., Li, Y., Liu, N., & Ding, Y. (2020). Predicting loan default in peer‐to‐peer lending using narrative data. Journal of Forecasting, 39, 260–280. https://doi.org/10.1002/for.2625.
    Paper not yet in RePEc: Add citation now
  64. Xia, Y., Li, Y., He, L., Xu, Y., & Meng, Y. (2021). Incorporating multilevel macroeconomic variables into credit scoring for online consumer lending. Electronic Commerce Research and Applications, 49, 101095. https://doi.org/10.1016/j.elerap.2021.101095.
    Paper not yet in RePEc: Add citation now
  65. Xia, Y., Liu, C., & Liu, N. (2017). Cost‐sensitive boosted tree for loan evaluation in peer‐to‐peer lending. Electronic Commerce Research and Applications, 24, 30–49. https://doi.org/10.1016/j.elerap.2017.06.004.
    Paper not yet in RePEc: Add citation now
  66. Xia, Y., Liu, C., Da, B., & Xie, F. (2018). A novel heterogeneous ensemble credit scoring model based on bstacking approach. Expert Systems with Applications, 93, 182–199. https://doi.org/10.1016/j.eswa.2017.10.022.
    Paper not yet in RePEc: Add citation now
  67. Xia, Y., Liu, C., Li, Y., & Liu, N. (2017). A boosted decision tree approach using Bayesian hyper‐parameter optimization for credit scoring. Expert Systems with Applications, 78, 225–241. https://doi.org/10.1016/j.eswa.2017.02.017.
    Paper not yet in RePEc: Add citation now
  68. Xia, Y., Yang, X., & Zhang, Y. (2018). A rejection inference technique based on contrastive pessimistic likelihood estimation for P2P lending. Electronic Commerce Research and Applications, 30, 111–124. https://doi.org/10.1016/j.elerap.2018.05.011.
    Paper not yet in RePEc: Add citation now
  69. Xia, Y., Zhao, J., He, L., Li, Y., & Yang, X. (2021). Forecasting loss given default for peer‐to‐peer loans via heterogeneous stacking ensemble approach. International Journal of Forecasting, 37, 1590–1613. https://doi.org/10.1016/j.ijforecast.2021.03.002.

  70. Xu, D., Zhang, X., & Feng, H. (2019). Generalized fuzzy soft sets theory‐based novel hybrid ensemble credit scoring model. International Journal of Finance and Economics, 24, 903–921. https://doi.org/10.1002/ijfe.1698.

  71. Yu, L., Li, X., Tang, L., Zhang, Z., & Kou, G. (2015). Social credit: A comprehensive literature review. Financial Innovation, 1, 1–18.

  72. Yu, L., Wang, S., & Lai, K. K. (2008). Credit risk assessment with a multistage neural network ensemble learning approach. Expert Systems with Applications, 34, 1434–1444. https://doi.org/10.1016/j.eswa.2007.01.009.
    Paper not yet in RePEc: Add citation now
  73. Zhang, W., He, H., & Zhang, S. (2019). A novel multi‐stage hybrid model with enhanced multi‐population niche genetic algorithm: An application in credit scoring. Expert Systems with Applications, 121, 221–232. https://doi.org/10.1016/j.eswa.2018.12.020.
    Paper not yet in RePEc: Add citation now
  74. Zhang, W., Yang, D., Zhang, S., Ablanedo‐Rosas, J. H., Wu, X., & Lou, Y. (2021). A novel multi‐stage ensemble model with enhanced outlier adaptation for credit scoring. Expert Systems with Applications, 165, 113872. https://doi.org/10.1016/j.eswa.2020.113872.
    Paper not yet in RePEc: Add citation now
  75. Zhou, Z.‐H. (2012). Ensemble methods: Foundations and algorithms. CRC Press.
    Paper not yet in RePEc: Add citation now
  76. Zhou, Z.‐H., & Feng, J. (2019). Deep forest. National Science Review, 6, 74–86. https://doi.org/10.1093/nsr/nwy108.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Multiperiod default probability forecasting. (2022). Blumke, Oliver.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:41:y:2022:i:4:p:677-696.

    Full description at Econpapers || Download paper

  2. Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach. (2021). Xia, Yufei ; Li, Yinguo ; Yang, Xiaoli ; He, Lingyun ; Zhao, Junhao.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:37:y:2021:i:4:p:1590-1613.

    Full description at Econpapers || Download paper

  3. Corporate failure prediction: An evaluation of deep learning vs discrete hazard models. (2021). Jones, Stewart ; Alam, Nurul ; Gao, Junbin.
    In: Journal of International Financial Markets, Institutions and Money.
    RePEc:eee:intfin:v:75:y:2021:i:c:s1042443121001633.

    Full description at Econpapers || Download paper

  4. A survival analysis of public guaranteed loans: Does financial intermediary matter?. (2021). Caselli, Stefano ; Rossolini, Monica ; Corbetta, Guido ; Cucinelli, Doriana.
    In: Journal of Financial Stability.
    RePEc:eee:finsta:v:54:y:2021:i:c:s1572308921000401.

    Full description at Econpapers || Download paper

  5. Selection Effects of Lender and Borrower Choices on Risk Measurement, Management and Prudential Regulation. (2020). Luong, Thi Mai.
    In: PhD Thesis.
    RePEc:uts:finphd:3-2020.

    Full description at Econpapers || Download paper

  6. Comparison study of two-step LGD estimation model with probability machines. (2020). Tanoue, Yuta ; Yamashita, Satoshi ; Nagahata, Hideaki.
    In: Risk Management.
    RePEc:pal:risman:v:22:y:2020:i:3:d:10.1057_s41283-020-00059-y.

    Full description at Econpapers || Download paper

  7. Modelling credit risk: evidence for EMV methodology on Portuguese mortgage data. (2020). Borges, Maria ; Machado, Raquel.
    In: Working Papers Department of Economics.
    RePEc:ise:isegwp:wp032020.

    Full description at Econpapers || Download paper

  8. Spatial contagion in mortgage defaults: A spatial dynamic survival model with time and space varying coefficients. (2020). Calabrese, Raffaella ; Crook, Jonathan.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:287:y:2020:i:2:p:749-761.

    Full description at Econpapers || Download paper

  9. Macroeconomic Factors in Modelling the SMEs Bankruptcy Risk. The Case of the Polish Market. (2019). Aneta, Ptak-Chmielewska ; Anna, Matuszyk.
    In: Econometrics. Advances in Applied Data Analysis.
    RePEc:vrs:eaiada:v:23:y:2019:i:3:p:40-49:n:4.

    Full description at Econpapers || Download paper

  10. Computational approaches and data analytics in financial services: A literature review. (2019). Andriosopoulos, Dimitris ; Pardalos, Panos M ; Doumpos, Michalis ; Zopounidis, Constantin.
    In: Journal of the Operational Research Society.
    RePEc:taf:tjorxx:v:70:y:2019:i:10:p:1581-1599.

    Full description at Econpapers || Download paper

  11. A prediction-driven mixture cure model and its application in credit scoring. (2019). Wang, Zhao ; Zhao, Huimin ; Jiang, Cuiqing.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:277:y:2019:i:1:p:20-31.

    Full description at Econpapers || Download paper

  12. Dynamic survival models with varying coefficients for credit risks.. (2019). Djeundje, Viani Biatat ; Crook, Jonathan.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:275:y:2019:i:1:p:319-333.

    Full description at Econpapers || Download paper

  13. Czynniki makroekonomiczne a spłacalność kredytów konsumpcyjnych. (2018). Sztaudynger, Marcin.
    In: Gospodarka Narodowa. The Polish Journal of Economics.
    RePEc:sgh:gosnar:y:2018:i:4:p:155-177.

    Full description at Econpapers || Download paper

  14. SURVIVAL ANALYSIS AS A TOOL FOR BETTER PROBABILITY OF DEFAULT PREDICTION. (2018). Rychnovsk, Michal.
    In: Acta Oeconomica Pragensia.
    RePEc:prg:jnlaop:v:2018:y:2018:i:1:id:594:p:34-46.

    Full description at Econpapers || Download paper

  15. Determinants of sovereign defaults. (2018). Ghulam, Yaseen ; Derber, Julian.
    In: The Quarterly Review of Economics and Finance.
    RePEc:eee:quaeco:v:69:y:2018:i:c:p:43-55.

    Full description at Econpapers || Download paper

  16. A copula sample selection model for predicting multi-year LGDs and Lifetime Expected Losses. (2018). Scheule, Harald ; Oehme, Toni ; Kruger, Steffen ; Rosch, Daniel.
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:47:y:2018:i:c:p:246-262.

    Full description at Econpapers || Download paper

  17. Incorporating heterogeneity and macroeconomic variables into multi-state delinquency models for credit cards. (2018). Djeundje, Viani Biatat ; Crook, Jonathan.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:271:y:2018:i:2:p:697-709.

    Full description at Econpapers || Download paper

  18. Macro economic cycle effect on mortgage and personal loan default rates. (2017). Strydom, Petrus .
    In: Journal of Applied Finance & Banking.
    RePEc:spt:apfiba:v:7:y:2017:i:6:f:7_6_1.

    Full description at Econpapers || Download paper

  19. A Quantitative Approach to Credit Risk Management in the Underwriting Process for the Retail Portfolio. (2017). Costea, Andreea .
    In: Romanian Economic Journal.
    RePEc:rej:journl:v:20:y:2017:i:63:p:157-186.

    Full description at Econpapers || Download paper

  20. Default contagion among credit modalities: evidence from Brazilian data. (2017). Alexandre, Michel ; Martins, Theo Cotrim ; Silva, Giovani Antonio.
    In: MPRA Paper.
    RePEc:pra:mprapa:76859.

    Full description at Econpapers || Download paper

  21. Time to default in credit scoring using survival analysis: a benchmark study. (2017). Dirick, Lore ; Claeskens, Gerda ; Baesens, Bart.
    In: Journal of the Operational Research Society.
    RePEc:pal:jorsoc:v:68:y:2017:i:6:d:10.1057_s41274-016-0128-9.

    Full description at Econpapers || Download paper

  22. The Probability of Default Under IFRS 9: Multi-period Estimation and Macroeconomic Forecast. (2017). Hampel, David ; Vank, Toma .
    In: Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis.
    RePEc:mup:actaun:actaun_2017065020759.

    Full description at Econpapers || Download paper

  23. Retail credit scoring using fine-grained payment data. (2017). Tobback, Ellen ; Martens, David.
    In: Working Papers.
    RePEc:ant:wpaper:2017011.

    Full description at Econpapers || Download paper

  24. Solutions to specification errors in stress testing models. (2016). Thomas, Lyn ; Breeden, Joseph L.
    In: Journal of the Operational Research Society.
    RePEc:pal:jorsoc:v:67:y:2016:i:6:p:830-840.

    Full description at Econpapers || Download paper

  25. Economic Adjustment of Default Probabilities. (2016). Vank, Toma .
    In: European Journal of Business Science and Technology.
    RePEc:men:journl:v:2:y:2016:i:2:p:122-130.

    Full description at Econpapers || Download paper

  26. Spline based survival model for credit risk modeling. (2016). Kong, Xiao ; Nie, Tingting ; Luo, Sirong.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:253:y:2016:i:3:p:869-879.

    Full description at Econpapers || Download paper

  27. An empirical comparison of classification algorithms for mortgage default prediction: evidence from a distressed mortgage market. (2016). Fitzpatrick, Trevor ; Mues, Christophe.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:249:y:2016:i:2:p:427-439.

    Full description at Econpapers || Download paper

  28. The Moderating Role of Loan Monitoring on the Relationship between Macroeconomic Variables and Non-performing Loans in Association of Southeast Asian Nations Countries. (2016). Nayan, Sabri ; Idris, Ismail Tijjani.
    In: International Journal of Economics and Financial Issues.
    RePEc:eco:journ1:2016-02-5.

    Full description at Econpapers || Download paper

  29. Energy-efficient homes and mortgage risk: crossing the chasm at last?. (2015). Beling, Peter A ; Rajaratnam, Kanshukan ; Overstreet, George A ; Sanderford, Andrew R.
    In: Environment Systems and Decisions.
    RePEc:spr:envsyd:v:35:y:2015:i:1:d:10.1007_s10669-015-9535-8.

    Full description at Econpapers || Download paper

  30. Modelling Time to Default Or Early Repayment as Competing Risks (Modelowanie czasu do zaprzestania splat rat kredytu lub wczesniejszej splaty kredytu jako zdarzen konkurujacych ). (2015). Wycinka, Ewa.
    In: Problemy Zarzadzania.
    RePEc:sgm:pzwzuw:v:13:i:55:y:2015:p:146-157.

    Full description at Econpapers || Download paper

  31. Stress test for a technology credit guarantee fund based on survival analysis. (2015). Ju, Yonghan ; Sohn, So Young.
    In: Journal of the Operational Research Society.
    RePEc:pal:jorsoc:v:66:y:2015:i:3:p:463-475.

    Full description at Econpapers || Download paper

  32. Dynamic Valuation of Delinquent Credit-Card Accounts. (2015). Weber, Thomas ; Chehrazi, Naveed.
    In: Management Science.
    RePEc:inm:ormnsc:v:61:y:2015:i:12:p:3077-3096.

    Full description at Econpapers || Download paper

  33. Loan Products and Credit Scoring by Commercial Banks (India). (2015). A, Selvarasu ; Itoo, Rais Ahmad ; Filipe, Jose Antonio ; Selvarasu, A.
    In: International Journal of Finance, Insurance and Risk Management.
    RePEc:ers:ijfirm:v:5:y:2015:i:1:p:851.

    Full description at Econpapers || Download paper

  34. Behavioral technology credit scoring model with time-dependent covariates for stress test. (2015). Ju, Yonghan ; Sohn, So Young ; Jeon, Song Yi .
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:242:y:2015:i:3:p:910-919.

    Full description at Econpapers || Download paper

  35. An Akaike information criterion for multiple event mixture cure models. (2015). Dirick, Lore ; Claeskens, Gerda ; Baesens, Bart.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:241:y:2015:i:2:p:449-457.

    Full description at Econpapers || Download paper

  36. Identifying future defaulters: A hierarchical Bayesian method. (2015). Hua, Zhongsheng ; Liu, Fan ; Lim, Andrew.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:241:y:2015:i:1:p:202-211.

    Full description at Econpapers || Download paper

  37. A Competing Risks Dynamic Hazard Approach to Investigate the Insolvency Outcomes of Property-Casualty Insurers. (2014). Dang, Huong.
    In: The Geneva Papers on Risk and Insurance - Issues and Practice.
    RePEc:pal:gpprii:v:39:y:2014:i:1:p:42-76.

    Full description at Econpapers || Download paper

  38. BANKING RETAIL CONSUMER FINANCE DATA GENERATOR – CREDIT SCORING DATA REPOSITORY. (2013). Przanowski, Karol .
    In: e-Finanse.
    RePEc:rze:efinan:v:9:y:2013:i:1:p:44-59.

    Full description at Econpapers || Download paper

  39. Forecasting and stress testing credit card default using dynamic models. (2013). Bellotti, Tony ; Crook, Jonathan.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:29:y:2013:i:4:p:563-574.

    Full description at Econpapers || Download paper

  40. Explaining the appearance and success of open space referenda. (2013). Walsh, Patrick ; Heintzelman, Martin ; Grzeskowiak, Dustin J..
    In: Ecological Economics.
    RePEc:eee:ecolec:v:95:y:2013:i:c:p:108-117.

    Full description at Econpapers || Download paper

  41. Probability of default in collateralized credit operations. (2013). Divino, Jose Angelo ; Rocha, Lineke Clementino Sleegers, .
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:25:y:2013:i:c:p:276-292.

    Full description at Econpapers || Download paper

  42. Multiple Event Incidence and Duration Analysis for Credit Data Incorporating Non-Stochastic Loan Maturity. (2012). Gerlach, Richard ; John G. T. Watkins, ; Vasnev, Andrey L..
    In: Working Papers.
    RePEc:syb:wpbsba:03/2013.

    Full description at Econpapers || Download paper

  43. BANKING RETAIL CONSUMER FINANCE DATA GENERATOR – CREDIT SCORING DATA REPOSITORY. (2012). Przanowski, Karol .
    In: e-Finanse.
    RePEc:rze:efinan:v:9:y:2012:i:1:p:44-59.

    Full description at Econpapers || Download paper

  44. Transition matrix models of consumer credit ratings. (2012). Malik, Madhur ; Thomas, Lyn C..
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:28:y:2012:i:1:p:261-272.

    Full description at Econpapers || Download paper

  45. Forecasting and explaining aggregate consumer credit delinquency behaviour. (2012). Crook, Jonathan ; Banasik, John .
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:28:y:2012:i:1:p:145-160.

    Full description at Econpapers || Download paper

  46. DPSIR=A Problem Structuring Method? An exploration from the “Imagine” approach. (2012). Bell, Simon.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:222:y:2012:i:2:p:350-360.

    Full description at Econpapers || Download paper

  47. Mixture cure models in credit scoring: If and when borrowers default. (2012). Tong, Edward N. C., ; Thomas, Lyn C. ; Mues, Christophe.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:218:y:2012:i:1:p:132-139.

    Full description at Econpapers || Download paper

  48. Forecasting and Stress Testing Credit Card Default Using Dynamic Models. (2011). Bellotti, Tony ; Crook, Jonathan.
    In: Working Papers.
    RePEc:ecl:upafin:11-34.

    Full description at Econpapers || Download paper

  49. Banking retail consumer finance data generator - credit scoring data repository. (2011). Przanowski, Karol .
    In: Papers.
    RePEc:arx:papers:1105.2968.

    Full description at Econpapers || Download paper

  50. Cyclical adjustment of point-in-time PD. (2010). Ingolfsson, S ; Elvarsson, B T.
    In: Journal of the Operational Research Society.
    RePEc:pal:jorsoc:v:61:y:2010:i:3:d:10.1057_jors.2009.136.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-21 19:13:59 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.