Acereda, B., Leon, A., & Mora, J. (2020). Estimating the expected shortfall of cryptocurrencies: An evaluation based on backtesting. Finance Research Letters, 33, 101181.
Alexander, C., & Dakos, M. (2020). A critical investigation of cryptocurrency data and analysis. Quantitative Finance, 20(2), 173–188.
Ardia, D., Bluteau, K., & Rüede, M. (2019). Regime changes in Bitcoin GARCH volatility dynamics. Finance Research Letters, 29, 266–271.
Ardia, D., Bluteau, K., Boudt, K., & Catania, L. (2018). Forecasting risk with Markov‐switching GARCH models: A large‐scale performance study. International Journal of Forecasting, 34(4), 733–747.
- Ardia, D., Bluteau, K., Boudt, K., Catania, L., & Trottier, D.‐A. (2019). Markov‐switching GARCH models in R: The MSGARCH package. Journal of Statistical Software, 91(4), 1–38.
Paper not yet in RePEc: Add citation now
- Ardia, D., Boudt, K., & Catania, L. (2019). Generalized autoregressive score models in R: The GAS package. Journal of Statistical Software, 88(6), 1–28.
Paper not yet in RePEc: Add citation now
- Atiya, A. F. (2020). Why does forecast combination work so well? International Journal of Forecasting, 36(1), 197–200.
Paper not yet in RePEc: Add citation now
Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3–30.
- Bartlett, M. S. (1946). On the theoretical specification and sampling properties of autocorrelated time‐series. Supplement to the Journal of the Royal Statistical Society, 8(1), 27–41.
Paper not yet in RePEc: Add citation now
Bauwens, L., Preminger, A., & Rombouts, J. V. K. (2010). Theory and inference for a Markov switching GARCH model. The Econometrics Journal, 13(2), 218–244.
Bayer, S. (2018). Combining value‐at‐risk forecasts using penalized quantile regressions. Econometrics and Statistics, 8, 56–77.
- Bayer, S., & Dimitriadis, T. (2020). Regression based expected shortfall backtesting. Journal of Financial Econometrics, 20, 437–471.
Paper not yet in RePEc: Add citation now
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327.
Boudt, K., Danielsson, J., & Laurent, S. (2013). Robust forecasting of dynamic conditional correlation GARCH models. International Journal of Forecasting, 29(2), 244–257.
- Bouri, E., Jalkh, N., Molnár, P., & Roubaud, D. (2017). Bitcoin for energy commodities before and after the December 2013 crash: Diversifier, hedge or safe haven? Applied Economics, 49(50), 5063–5073.
Paper not yet in RePEc: Add citation now
- Buczyński, M., & Chlebus, M. (2019). Old‐fashioned parametric models are still the best: A comparison of value‐at‐risk approaches in several volatility states. Journal of Risk Model Validation, 14(2), 1–20.
Paper not yet in RePEc: Add citation now
- Calmon, W., Ferioli, E., Lettieri, D., Soares, J., & Pizzinga, A. (2020). An extensive comparison of some well‐established value at risk methods. International Statistical Review, 89(1), 148–166.
Paper not yet in RePEc: Add citation now
- Caporale, G. M., & Zekokh, T. (2019). Modelling volatility of cryptocurrencies using Markov‐switching GARCH models. Research in International Business and Finance, 48, 143–155.
Paper not yet in RePEc: Add citation now
Carnero, M. A., Peña, D., & Ruiz, E. (2012). Estimating GARCH volatility in the presence of outliers. Economics Letters, 114(1), 86–90.
- Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic Review, 39(4), 841–862.
Paper not yet in RePEc: Add citation now
Creal, D., Koopman, S. J., & Lucas, A. (2013). Generalized autoregressive score models with applications. Journal of Applied Econometrics, 28(5), 777–795.
- Danielsson, J. (2011). Risk and crises. voxeu.org url:. http://voxeu.org/article/risk-and-crises-how-models-failed-and-are-failing.
Paper not yet in RePEc: Add citation now
- Dimitriadis, T., & Bayer, S. (2019). A joint quantile and expected shortfall regression framework. Electronic Journal of Statistics, 13(1), 1823–1871.
Paper not yet in RePEc: Add citation now
Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar—A GARCH volatility analysis. Finance Research Letters, 16, 85–92.
Engle, R. F., & Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics, 22(4), 367–381.
Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. The Journal of Finance, 48(5), 1749–1778.
- Fissler, T., & Ziegel, J. (2016). Higher order elicitability and Osband's principle. The Annals of Statistics, 44(4), 1680–1707.
Paper not yet in RePEc: Add citation now
- Fissler, T., Ziegel, J. F., & Gneiting, T. (2016). Expected Shortfall is jointly elicitable with value at risk—Implications for backtesting. Risk, 5(1), 8–16.
Paper not yet in RePEc: Add citation now
Francq, C., & Zakoïan, J.‐M. (2009). Bartlett's formula for a general class of nonlinear processes. Journal of Time Series Analysis, 30(4), 449–465.
- Gaglianone, W. P., Lima, L. R., Linton, O., & Smith, D. R. (2011). Evaluating value‐at‐risk models via quantile regression. Journal of Business & Economic Statistics, 29(1), 150–160.
Paper not yet in RePEc: Add citation now
- Ghalanos, A. (2020). rugarch: Univariate GARCH models. R package version 1.4‐4.
Paper not yet in RePEc: Add citation now
Giacomini, R., & Komunjer, I. (2005). Evaluation and combination of conditional quantile forecasts. Journal of Business & Economic Statistics, 23(4), 416–431.
Giacomini, R., & Rossi, B. (2010). Forecast comparisons in unstable environments. Journal of Applied Econometrics, 25(4), 595–620.
Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779–1801.
González‐Rivera, G., Lee, T.‐H., & Mishra, S. (2004). Forecasting volatility: A reality check based on option pricing, utility function, value‐at‐risk, and predictive likelihood. International Journal of Forecasting, 20(4), 629–645.
Haas, M., Mittnik, S., & Paolella, M. S. (2004). A new approach to markov‐switching GARCH models. Journal of Financial Econometrics, 2(4), 493–530.
Halbleib, R., & Pohlmeier, W. (2012). Improving the value at risk forecasts: Theory and evidence from the financial crisis. Journal of Economic Dynamics and Control, 36(8), 1212–1228.
- Hallin, M., & Trucíos, C. (2021). Forecasting value‐at‐risk and expected shortfall in large portfolios: A general dynamic factor model approach. Econometrics and Statistics. https://doi.org/10.1016/j.ecosta.2021.04.006.
Paper not yet in RePEc: Add citation now
Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453–497.
Happersberger, D., Lohre, H., & Nolte, I. (2020). Estimating portfolio risk for tail risk protection strategies. European Financial Management, 26, 1107–1146.
- Harvey, A. C. (2013). Dynamic models for volatility and heavy tails: With applications to financial and economic time series, Vol. 52: Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Hill, G. W. (1970). Algorithm 396: Student's t‐quantiles. Communications of the ACM, 13(10), 619–620.
Paper not yet in RePEc: Add citation now
Hillebrand, E. (2005). Neglecting parameter changes in GARCH models. Journal of Econometrics, 129(1‐2), 121–138.
Hoogerheide, L., & van Dijk, H. K. (2010). Bayesian forecasting of value at risk and expected shortfall using adaptive importance sampling. International Journal of Forecasting, 26(2), 231–247.
- Hotta, L. K., & Trucíos, C. (2018). Inference in (M)GARCH models in the presence of additive outliers: Specification, estimation and prediction, Advances in mathematics and applications: Springer, pp. 179–202.
Paper not yet in RePEc: Add citation now
- Koenker, R., & Machado, J. A. F. (1999). Goodness of fit and related inference processes for quantile regression. Journal of the American Statistical Association, 94(448), 1296–1310.
Paper not yet in RePEc: Add citation now
- Li, Z., Dong, H., Floros, C., Charemis, A., & Failler, P. (2021). Re‐examining bitcoin volatility: A CAViaR‐based approach. Emerging Markets Finance and Trade, 58(5), 1320–1338.
Paper not yet in RePEc: Add citation now
- Liu, W., Semeyutin, A., Lau, C. K. M., & Gozgor, G. (2020). Forecasting value‐at‐risk of cryptocurrencies with riskmetrics type models. Research in International Business and Finance, 54, 101259.
Paper not yet in RePEc: Add citation now
- Lu, X., Liu, C., Lai, K. K., & Cui, H. (2021). Risk measurement in Bitcoin market by fusing LSTM with the joint‐regression‐combined forecasting model. Kybernetes. https://doi.org/10.1108/K-07-2021-0620.
Paper not yet in RePEc: Add citation now
Luther, W. J., & Salter, A. W. (2017). Bitcoin and the bailout. The Quarterly Review of Economics and Finance, 66, 50–56.
- Maciel, L. (2020). Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting? International Journal of Finance & Economics, 26, 4840–4855.
Paper not yet in RePEc: Add citation now
- Manganelli, S., & Engle, R. F. (2004). A comparison of value‐at‐risk models in finance, Risk measures for the 21st century. Chichester: Wiley, pp. 123–144.
Paper not yet in RePEc: Add citation now
- McAleer, M., Jimenez‐Martin, J.‐A., & Perez‐Amaral, T. (2013a). GFC‐ risk management strategies under the Basel accord. International Review of Economics & Finance, 27, 97–111.
Paper not yet in RePEc: Add citation now
- McAleer, M., Jiménez‐Martín, J.‐A., & Pérez‐Amaral, T. (2013b). International evidence on GFC‐forecasts for risk management under the Basel accord. Journal of Forecasting, 32(3), 267–288.
Paper not yet in RePEc: Add citation now
McNeil, A. J., & Frey, R. (2000). Estimation of tail‐related risk measures for heteroscedastic financial time series: An extreme value approach. Journal of Empirical Finance, 7(3‐4), 271–300.
- Nakamoto, S. (2008). Bitcoin: A peer‐to‐peer electronic cash system.
Paper not yet in RePEc: Add citation now
Nieto, M. R., & Ruiz, E. (2016). Frontiers in VaR forecasting and backtesting. International Journal of Forecasting, 32(2), 475–501.
Nolde, N., Ziegel, J. F., et al. (2017). Elicitability and backtesting: Perspectives for banking regulation. The Annals of Applied Statistics, 11(4), 1833–1874.
- Piessens, R., de Doncker‐Kapenga, E., Überhuber, C. W., & Kahaner, D. K. (2012). Quadpack: A subroutine package for automatic integration, Vol. 1: Springer Science & Business Media.
Paper not yet in RePEc: Add citation now
Righi, M. B., & Ceretta, P. S. (2015). A comparison of expected shortfall estimation models. Journal of Economics and Business, 78, 14–47.
Soylu, P. K., Okur, M., Çatıkkaş, O., & Altintig, Z. A. (2020). Long memory in the volatility of selected cryptocurrencies: Bitcoin, Ethereum and Ripple. Journal of Risk and Financial Management, 13(6), 107.
Taylor, J. W. (2019). Forecasting value at risk and expected shortfall using a semiparametric approach based on the asymmetric laplace distribution. Journal of Business & Economic Statistics, 37(1), 121–133.
Taylor, J. W. (2020). Forecast combinations for value at risk and expected shortfall. International Journal of Forecasting, 36(2), 428–441.
Thomson, M. E., Pollock, A. C., Önkal, D., & Gönül, M. S. (2019). Combining forecasts: Performance and coherence. International Journal of Forecasting, 35(2), 474–484.
Timmermann, A. (2006). Forecast combinations. Handbook of Economic Forecasting, 1, 135–196.
Troster, V., Tiwari, A. K., Shahbaz, M., & Macedo, D. N. (2019). Bitcoin returns and risk: A general GARCH and GAS analysis. Finance Research Letters, 30, 187–193.
Trucíos, C. (2019). Forecasting Bitcoin risk measures: A approach. International Journal of Forecasting, 35(3), 836–847.
- Trucios, C. (2020). RobGARCHBoot: Robust bootstrap forecast densities for GARCH models.
Paper not yet in RePEc: Add citation now
Trucíos, C., & Hotta, L. K. (2016). Bootstrap prediction in univariate volatility models with leverage effect. Mathematics and Computers in Simulation, 120, 91–103.
Trucíos, C., Hotta, L. K., & Ruiz, E. (2015). Robust bootstrap forecast densities for GARCH models: Returns, volatilities and value‐at‐risk. UC3M Working Papers Statistics and Econometrics, 15(22).
- Trucíos, C., Hotta, L. K., & Ruiz, E. (2017). Robust bootstrap forecast densities for GARCH returns and volatilities. Journal of Statistical Computation and Simulation, 87(16), 3152–3174.
Paper not yet in RePEc: Add citation now