- Alessi, L., & Detken, C. (2009). ‘Real time’ early warning indicators for costly asset price boom/bust cycles: A role for global liquidity: European Central Bank Working Paper Series 1039.
Paper not yet in RePEc: Add citation now
- Alessi, L., Barigozzi, M., & Capasso, M. (2010). Improved penalization for determining the number of factors in approximate factor models. Statistics & Probability Letters, 80(23‐24), 1806–1813.
Paper not yet in RePEc: Add citation now
Altissimo, F., Cristadoro, R., Forni, M., Lippi, M., & Veronese, G. (2010). New Eurocoin: Tracking economic growth in real time. The Review of Economics and Statistics, 92(4), 1024–1034.
- Aprigliano, V., & Bencivelli, L. (2013). Ita‐coin: A new coincident indicator for the Italian economy: Bank of Italy, Economic Research and International Relations Area Temi di discussione (Economic working papers) 935.
Paper not yet in RePEc: Add citation now
Aprigliano, V., & Liberati, D. (2021). Using credit variables to date business cycle and to estimate the probabilities of recession in real time. The Manchester School, 89(S1), 76–96.
- Aruoba, S. B., Diebold, F. X., & Scotti, C. (2009). Real‐time measurement of business conditions. Journal of Business & Economic Statistics, 27(4), 417–427.
Paper not yet in RePEc: Add citation now
Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191–221.
Bai, J., & Ng, S. (2007). Determining the number of primitive shocks in factor models. Journal of Business & Economic Statistics, 25(1), 52–60.
- Banbura, M., Giannone, D., Modugno, M., & Reichlin, L. (2013). Chapter 4—Now‐casting and the real‐time data flow, Handbook of economic forecasting, Vol. 2: Elsevier, pp. 195–237.
Paper not yet in RePEc: Add citation now
- Barigozzi, M., Lippi, M., & Luciani, M. (2016). Non‐stationary dynamic factor models for large datasets. Available at SSRN 2741739.
Paper not yet in RePEc: Add citation now
Barigozzi, M., Lippi, M., & Luciani, M. (2020). Cointegration and error correction mechanisms for singular stochastic vectors. Econometrics, 8(1), 3.
Barigozzi, M., Lippi, M., & Luciani, M. (2021). Large‐dimensional dynamic factor models: Estimation of impulse–response functions with I(1) cointegrated factors. Journal of Econometrics, 221(2), 455–482.
- Bellégo, C., & Ferrara, L. (2012). Macro‐financial linkages and business cycles: A factor‐augmented probit approach. Economic Modelling, 29(5), 1793–1797.
Paper not yet in RePEc: Add citation now
Bellégo, C., & Ferrara, L. (2017). Forecasting euro area recessions by combining financial information. International Journal of Computational Economics and Econometrics, 7(1/2), 78–94.
Bencivelli, L., Marcellino, M., & Moretti, G. (2017). Forecasting economic activity by Bayesian bridge model averaging. Empirical Economics, 53(1), 21–40.
Berge, T. J., & Jordá, O. (2011). Evaluating the classification of economic activity into recessions and expansions. American Economic Journal: Macroeconomics, 3(2), 246–77.
Berger, T., Morley, J., & Wong, B. (2020). Nowcasting the output gap: Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University CAMA Working Papers 2020‐78.
Bernanke, B. S., Gertler, M., & Gilchrist, S. (1999). Chapter 21 The financial accelerator in a quantitative business cycle framework, Handbook of macroeconomics, Vol. 1: Elsevier, pp. 1341–1393.
Boivin, J., & Ng, S. (2005). Understanding and comparing factor‐based forecasts. International Journal of Central Banking, 1(3), 117–151.
Bok, B., Caratelli, D., Giannone, D., Sbordone, A. M., & Tambalotti, A. (2018). Macroeconomic nowcasting and forecasting with big data. Annual Review of Economics, 10, 615–643.
Borio, C., Drehmann, M., & Xia, F. D. (2020). Forecasting recessions: the importance of the financial cycle. Journal of Macroeconomics, 66, 103258.
- Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78(1), 1.
Paper not yet in RePEc: Add citation now
Bry, G., & Boschan, C. (1971). Cyclical analysis of time series: Selected procedures and computer programs: National Bureau of Economic Research, Inc.
Carstensen, K., Heinrich, M., Reif, M., & Wolters, M. H. (2020). Predicting ordinary and severe recessions with a three‐state Markov‐switching dynamic factor model: An application to the German business cycle. International Journal of Forecasting, 36(3), 829–850.
- Chauvet, M., & Potter, S. M. (2001). Forecasting recessions using the yield curve: Federal Reserve Bank of New York Staff Reports 134.
Paper not yet in RePEc: Add citation now
Chen, Z., Iqbal, A., & Lai, H. (2011). Forecasting the probability of US recessions: A probit and dynamic factor modelling approach. The Canadian Journal of Economics/Revue canadienne d'Economique, 44(2), 651–672.
- Claessens, S., Kose, M. A., & Terrones, M. E. (2012). How do business and financial cycles interact? Journal of International Economics, 87(1), 178–190. Symposium on the Global Dimensions of the Financial Crisis.
Paper not yet in RePEc: Add citation now
- Crump, R. K., Eusepi, S., Giannone, D., Qian, E., & Sbordone, A. M. (2021). A large Bayesian VAR of the United States economy: Federal Reserve Bank of New York Staff Reports 976.
Paper not yet in RePEc: Add citation now
- Delle Monache, D., Emiliozzi, S., & Nobili, A. (2020). Tracking economic growth during the Covid‐19: A weekly indicator for Italy. Banca d Italia, Note Covid‐19, 27 gennaio 2021.
Paper not yet in RePEc: Add citation now
Doz, C., Giannone, D., & Reichlin, L. (2011). A two‐step estimator for large approximate dynamic factor models based on Kalman filtering. Journal of Econometrics, 164(1), 188–205. Annals Issue on Forecasting.
- Doz, C., Giannone, D., & Reichlin, L. (2012). A quasi–maximum likelihood approach for large, approximate dynamic factor models. The Review of Economics and Statistics, 94(4), 1014–1024.
Paper not yet in RePEc: Add citation now
Drehmann, M., & Juselius, M. (2014). Evaluating early warning indicators of banking crises: Satisfying policy requirements. International Journal of Forecasting, 30(3), 759–780.
Duarte, A., Venetis, I. A., & Paya, I. (2005). Predicting real growth and the probability of recession in the euro area using the yield spread. International Journal of Forecasting, 21(2), 261–277.
- Dueker, M. J. (1997). Strengthening the case for the yield curve as a predictor of U.S. recessions. Federal Reserve Bank of St. Louis Review, 79(Mar), 41–51.
Paper not yet in RePEc: Add citation now
Ercolani, V., & Natoli, F. (2020). Forecasting US recessions: The role of economic uncertainty. Economics Letters, 193, 109302.
Estrella, A., & Hardouvelis, G. A. (1991). The term structure as a predictor of real economic activity. The Journal of Finance, 46(2), 555–576.
Estrella, A., & Mishkin, F. S. (1997). The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank. European Economic Review, 41(7), 1375–1401.
Estrella, A., Rodrigues, A. R., & Schich, S. (2003). How stable is the predictive power of the yield curve? Evidence from Germany and the United States. The Review of Economics and Statistics, 85(3), 629–644.
Fendel, R., Mai, N., & Mohr, O. (2021). Recession probabilities for the Eurozone at the zero lower bound: Challenges to the term spread and rise of alternatives. Journal of Forecasting, 40(6), 1000–1026.
Forni, M., & Lippi, M. (2001). The generalized dynamic factor model: Representation theory. Econometric Theory, 2001, 1113–1141.
Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2000). The generalized dynamic‐factor model: Identification and estimation. The Review of Economics and Statistics, 82(4), 540–554.
Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2005). The generalized dynamic factor model: One‐sided estimation and forecasting. Journal of the American Statistical Association, 100(471), 830–840.
Frale, C., Marcellino, M., Mazzi, G. L., & Proietti, T. (2011). Euromind: A monthly indicator of the euro area economic conditions. Journal of the Royal Statistical Society. Series A (Statistics in Society), 174(2), 439–470.
- Galvao, A. B., & Owyang, M. (2022). Forecasting low‐frequency macroeconomic events with high‐frequency data. Journal of Applied Econometrics, 37(7), 1314–1333.
Paper not yet in RePEc: Add citation now
- Giannone, D., Reichlin, L., & Small, D. (2008). Nowcasting: The real‐time informational content of macroeconomic data. Journal of Monetary Economics, 55(4), 665–676.
Paper not yet in RePEc: Add citation now
Gilchrist, S., & Zakrajšek, E. (2012). Credit spreads and business cycle fluctuations. American Economic Review, 102(4), 1692–1720.
Golinelli, R., & Parigi, G. (2007). The use of monthly indicators to forecast quarterly GDP in the short run: An application to the G7 countries. Journal of Forecasting, 26(2), 77–94.
Goulet Coulombe, P., Leroux, M., Stevanovic, D., & Surprenant, S. (2020). Macroeconomic data transformations matter. arXiv e‐prints, arXiv–2008.
Hamilton, J. D. (2011). Calling recessions in real time. International Journal of Forecasting, 27(4), 1006–1026.
Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453–497.
Harding, D., & Pagan, A. (2002). Dissecting the cycle: A methodological investigation. Journal of Monetary Economics, 49(2), 365–381.
Horowitz, J. L., & Savin, N. E. (2001). Binary response models: Logits, probits and semiparametrics. Journal of Economic Perspectives, 15(4), 43–56.
- ISTAT (2011). Rapporto annuale—la situazione del paese nel 2010: ISTAT.
Paper not yet in RePEc: Add citation now
Jarmulska, B. (2022). Random forest versus logit models: Which offers better early warning of fiscal stress? Journal of Forecasting, 41(3), 455–490.
Karnizova, L., & Li, J. C. (2014). Economic policy uncertainty, financial markets and probability of US recessions. Economics Letters, 125(2), 261–265.
Kim, C.‐J., & Nelson, C. (1998). Business cycle turning points, a new coincident index, and tests of duration dependence based on a dynamic factor model with regime switching. The Review of Economics and Statistics, 80(2), 188–201.
- Kim, C.‐J., & Nelson, C. R. (2017). State‐space models with regime switching: Classical and Gibbs‐sampling approaches with applications: The MIT Press.
Paper not yet in RePEc: Add citation now
Kim, H. H., & Swanson, N. R. (2018). Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods. International Journal of Forecasting, 34(2), 339–354.
- Kiyotaki, N., & Moore, J. (1997). Credit cycles. Journal of Political Economy, 105(2), 211–248.
Paper not yet in RePEc: Add citation now
Lewis, D. J., Mertens, K., Stock, J. H., & Trivedi, M. (2020). High frequency data and a weekly economic index during the pandemic: Federal Reserve Bank of New York Staff Reports 954.
Lewis, D. J., Mertens, K., Stock, J. H., & Trivedi, M. (2021). Measuring real activity using a weekly economic index. Journal of Applied Econometrics, 37(4), 667–687.
- Marcellino, M., Porqueddu, M., & Venditti, F. (2016). Short‐term GDP forecasting with a mixed‐frequency dynamic factor model with stochastic volatility. Journal of Business & Economic Statistics, 34(1), 118–127.
Paper not yet in RePEc: Add citation now
- McFadden, D. (1974). Conditional logit analysis of qualitative choice behaviour. In Zarembka, P. (Ed.), Frontiers in econometrics: Academic Press New York, pp. 105–142.
Paper not yet in RePEc: Add citation now
- Miglietta, A., & Venditti, F. (2019). An indicator of macro‐financial stress for Italy. Bank of Italy Occasional Paper 497.
Paper not yet in RePEc: Add citation now
Moneta, F. (2005). Does the yield spread predict recessions in the euro area? International Finance, 8(2), 263–301.
Nalewaik, J. J. (2012). Estimating probabilities of recession in real time using GDP and GDI. Journal of Money, Credit and Banking, 44(1), 235–253.
- Nevasalmi, L. (2021). Recession forecasting with high‐dimensional data. Journal of Forecasting, 41(4), 752–764.
Paper not yet in RePEc: Add citation now
Ng, E. C. Y. (2012). Forecasting US recessions with various risk factors and dynamic probit models. Journal of Macroeconomics, 34(1), 112–125. Has macro progressed?.
Paccagnini, A. (2019). Did financial factors matter during the Great Recession? Economics Letters, 174, 26–30.
- Pacella, C. (2021). Dating the euro area business cycle: An evaluation: Bank of Italy, Economic Research and International Relations Area Temi di discussione (Economic working papers) 1332.
Paper not yet in RePEc: Add citation now
Rudebusch, G. D., & Williams, J. C. (2009). Forecasting recessions: The puzzle of the enduring power of the yield curve. Journal of Business & Economic Statistics, 27(4), 492–503.
Sarlin, P., & von Schweinitz, G. (2021). Optimizing policymakers' loss functions in crisis prediction: Before, within or after? Macroeconomic Dynamics, 25(1), 100–123.
- Shiskin, J. (1974). The changing business cycle, Vol. 22: The New York Times.
Paper not yet in RePEc: Add citation now
Silvestrini, A., & Zaghini, A. (2015). Financial shocks and the real economy in a nonlinear world: From theory to estimation. Journal of Policy Modeling, 37(6), 915–929.
Stock, J. H., & Watson, M. W. (1993). A procedure for predicting recessions with leading indicators: Econometric issues and recent experience, Business Cycles, Indicators, and Forecasting: National Bureau of Economic Research, Inc, pp. 95–156.
Stock, J. H., & Watson, M. W. (2002a). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460), 1167–1179.
Stock, J. H., & Watson, M. W. (2002b). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics, 20(2), 147–162.
Stock, J. H., & Watson, M. W. (2003). Forecasting output and inflation: The role of asset prices. Journal of Economic Literature, 41(3), 788–829.
Stock, J. H., & Watson, M. W. (2016). Dynamic factor models, factor‐augmented vector autoregressions, and structural vector autoregressions in macroeconomics, Handbook of macroeconomics, Vol. 2: Elsevier, pp. 415–525.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288.
Paper not yet in RePEc: Add citation now
- Wright, J. H. (2006). The yield curve and predicting recessions: Board of Governors of the Federal Reserve System (U.S.) Finance and Economics Discussion Series 2006‐07.
Paper not yet in RePEc: Add citation now
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.