- Altan, A., Karasu, S., & Zio, E. (2021). A new hybrid model for wind speed forecasting combining long short‐term memory neural network, decomposition methods and grey wolf optimizer. Applied Soft Computing, 100, 106996. https://doi.org/10.1016/J.ASOC.2020.106996.
Paper not yet in RePEc: Add citation now
Bashir, H., Sibtain, M., Hanay, Ö., Azam, M. I., Qurat‐ul‐Ain, & Saleem, S. (2023). Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence‐based spatiotemporal attention. Energy, 278, 127933. https://doi.org/10.1016/J.ENERGY.2023.127933.
- Broomhead, D. S., & King, G. P. (1986). Extracting qualitative dynamics from experimental data. Physica D: Nonlinear Phenomena, 20(2–3), 217–236. https://doi.org/10.1016/0167-2789(86)90031-X.
Paper not yet in RePEc: Add citation now
Cai, H., Jia, X., Feng, J., Yang, Q., Li, W., Li, F., & Lee, J. (2021). A unified Bayesian filtering framework for multi‐horizon wind speed prediction with improved accuracy. Renewable Energy, 178, 709–719. https://doi.org/10.1016/J.RENENE.2021.06.092.
- Casella, L. (2019). Wind speed reconstruction using a novel multivariate probabilistic method and multiple linear regression: Advantages compared to the single correlation approach. Journal of Wind Engineering and Industrial Aerodynamics, 191, 252–265. https://doi.org/10.1016/J.JWEIA.2019.05.020.
Paper not yet in RePEc: Add citation now
- Chen, X. J., Zhao, J., Jia, X. Z., & Li, Z. L. (2021). Multi‐step wind speed forecast based on sample clustering and an optimized hybrid system. Renewable Energy, 165, 595–611. https://doi.org/10.1016/j.renene.2020.11.038.
Paper not yet in RePEc: Add citation now
- Chen, X., Jin, S., Qin, S., & Li, L. (2015). Short‐term wind speed forecasting study and its application using a hybrid model optimized by cuckoo search. Mathematical Problems in Engineering, 2015, 1–18. https://doi.org/10.1155/2015/608597.
Paper not yet in RePEc: Add citation now
- Chen, X., Zhao, J., Hu, W., & Yang, Y. (2014). Short‐term wind speed forecasting using decomposition‐based neural networks combining abnormal detection method. Abstract and Applied Analysis, 2014, 1–21. https://doi.org/10.1155/2014/984268.
Paper not yet in RePEc: Add citation now
- Deng, Y., & Gao, Q. (2020). A study on e‐commerce customer segmentation management based on improved K‐means algorithm. Information Systems and e‐Business Management, 18(4), 497–510. https://doi.org/10.1007/S10257-018-0381-3/TABLES/5.
Paper not yet in RePEc: Add citation now
- Dong, Y., Li, J., Liu, Z., Niu, X., & Wang, J. (2022). Ensemble wind speed forecasting system based on optimal model adaptive selection strategy: Case study in China. Sustainable Energy Technologies and Assessments, 53(PB), 102535. https://doi.org/10.1016/j.seta.2022.102535.
Paper not yet in RePEc: Add citation now
Duarte Jacondino, W., Nascimento, A. L. S., Calvetti, L., Fisch, G., Augustus Assis Beneti, C., & da Paz, S. R. (2021). Hourly day‐ahead wind power forecasting at two wind farms in Northeast Brazil using WRF model. Energy, 230, 120841. https://doi.org/10.1016/j.energy.2021.120841.
- Fan, F., Bell, K., Hill, D., & Infield, D. (2015). Wind forecasting using kriging and vector auto‐regressive models for dynamic line rating studies. 2015 IEEE Eindhoven PowerTech, PowerTech 2015. https://doi.org/10.1109/PTC.2015.7232348.
Paper not yet in RePEc: Add citation now
- Flandrin, P., Torres, E., & Colominas, M. A. (2011). A complete ensemble empirical mode decomposition with adaptive noise. 4144–4147.
Paper not yet in RePEc: Add citation now
- Fu, W., Fang, P., Wang, K., Li, Z., Xiong, D., & Zhang, K. (2021). Multi‐step ahead short‐term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennae search algorithm‐based synchronous optimization and Volterra series model. Renewable Energy, 179, 1122–1139. https://doi.org/10.1016/J.RENENE.2021.07.119.
Paper not yet in RePEc: Add citation now
Fu, W., Fu, Y., Li, B., Zhang, H., Zhang, X., & Liu, J. (2023). A compound framework incorporating improved outlier detection and correction, VMD, weight‐based stacked generalization with enhanced DESMA for multi‐step short‐term wind speed forecasting. Applied Energy, 348, 121587. https://doi.org/10.1016/J.APENERGY.2023.121587.
- He, F., Zhou, J., Feng, Z. K., Liu, G., & Yang, Y. (2019). A hybrid short‐term load forecasting model based on variational mode decomposition and long short‐term memory networks considering relevant factors with Bayesian optimization algorithm. Applied Energy, 237, 103–116. https://doi.org/10.1016/J.APENERGY.2019.01.055.
Paper not yet in RePEc: Add citation now
Herrera, F., Herrera‐Viedma, E., & Chiclana, F. (2001). Multiperson decision‐making based on multiplicative preference relations. European Journal of Operational Research, 129(2), 372–385. https://doi.org/10.1016/S0377-2217(99)00197-6.
Hu, H., Wang, L., & Tao, R. (2021). Wind speed forecasting based on variational mode decomposition and improved echo state network. Renewable Energy, 164, 729–751. https://doi.org/10.1016/J.RENENE.2020.09.109.
Hu, H., Wang, L., Zhang, D., & Ling, L. (2023). Rolling decomposition method in fusion with echo state network for wind speed forecasting. Renewable Energy, 216, 119101. https://doi.org/10.1016/J.RENENE.2023.119101.
- Hu, Q., Zhang, R., & Zhou, Y. (2016). Transfer learning for short‐term wind speed prediction with deep neural networks. Renewable Energy, 85, 83–95. https://doi.org/10.1016/J.RENENE.2015.06.034.
Paper not yet in RePEc: Add citation now
- Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Snin, H. H., Zheng, Q., Yen, N. C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non‐stationary time series analysis. RSPSA, 454(1971), 903–998. https://doi.org/10.1098/RSPA.1998.0193.
Paper not yet in RePEc: Add citation now
- Jahangir, H., Golkar, M. A., Alhameli, F., Mazouz, A., Ahmadian, A., & Elkamel, A. (2020). Short‐term wind speed forecasting framework based on stacked denoising auto‐encoders with rough ANN. Sustainable Energy Technologies and Assessments, 38(June 2019), 100601. https://doi.org/10.1016/j.seta.2019.100601.
Paper not yet in RePEc: Add citation now
Jiang, P., Wang, B., Li, H., & Lu, H. (2019). Modeling for chaotic time series based on linear and nonlinear framework : Application to wind speed forecasting. Energy, 173, 468–482. https://doi.org/10.1016/j.energy.2019.02.080.
- Kitto, G. B. (1968). Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. 407–408.
Paper not yet in RePEc: Add citation now
- Kuo, H. C., & Chang, H. K. (2003). A real‐time shipboard fire‐detection system based on grey‐fuzzy algorithms. Fire Safety Journal, 38(4), 341–363. https://doi.org/10.1016/S0379-7112(02)00088-7.
Paper not yet in RePEc: Add citation now
- Lahouar, A., & Ben Hadj Slama, J. (2017). Hour‐ahead wind power forecast based on random forests. Renewable Energy, 109, 529–541. https://doi.org/10.1016/J.RENENE.2017.03.064.
Paper not yet in RePEc: Add citation now
- Li, X., Peng, L., Yao, X., Cui, S., Hu, Y., You, C., & Chi, T. (2017). Long short‐term memory neural network for air pollutant concentration predictions: Method development and evaluation. Environmental Pollution, 231, 997–1004. https://doi.org/10.1016/j.envpol.2017.08.114.
Paper not yet in RePEc: Add citation now
- Liu, G., Wang, A., & Zhao, Y. (2011). An efficient image segmentation method based on fuzzy particle swarm optimization and Markov random field model. 7th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2011. https://doi.org/10.1109/WICOM.2011.6040554.
Paper not yet in RePEc: Add citation now
- Liu, K., Cheng, J., & Yi, J. (2022). Copper price forecasted by hybrid neural network with Bayesian optimization and wavelet transform. Resources Policy, 75, 102520. https://doi.org/10.1016/J.RESOURPOL.2021.102520.
Paper not yet in RePEc: Add citation now
- Liu, M., Cao, Z., Zhang, J., Wang, L., Huang, C., & Luo, X. (2020). Short‐term wind speed forecasting based on the Jaya‐SVM model. International Journal of Electrical Power & Energy Systems, 121, 106056. https://doi.org/10.1016/J.IJEPES.2020.106056.
Paper not yet in RePEc: Add citation now
- Liu, X., Lin, Z., & Feng, Z. (2021). Short‐term offshore wind speed forecast by seasonal ARIMA—A comparison against GRU and LSTM. Energy, 227, 120492. https://doi.org/10.1016/J.ENERGY.2021.120492.
Paper not yet in RePEc: Add citation now
- Lv, M., Li, J., Niu, X., & Wang, J. (2022). Novel deterministic and probabilistic combined system based on deep learning and self‐improved optimization algorithm for wind speed forecasting. Sustainable Energy Technologies and Assessments, 52(PB), 102186. https://doi.org/10.1016/j.seta.2022.102186.
Paper not yet in RePEc: Add citation now
- Ma, D., & Duan, Q. (2022). A hybrid‐strategy‐improved butterfly optimization algorithm applied to the node coverage problem of wireless sensor networks. Mathematical Biosciences and Engineering, 19(4), 3928–3952. https://doi.org/10.3934/MBE.2022181.
Paper not yet in RePEc: Add citation now
- Méndez‐Gordillo, A. R., Campos‐Amezcua, R., & Cadenas, E. (2022). Wind speed forecasting using a hybrid model considering the turbulence of the airflow. Renewable Energy, 196, 422–431. https://doi.org/10.1016/j.renene.2022.06.139.
Paper not yet in RePEc: Add citation now
- Moghram, I., & Rahman, S. (1989). Analysis and evaluation of five short‐term load forecasting techniques. IEEE Power Engineering Review, 9(11), 42–43. https://doi.org/10.1109/MPER.1989.4310383.
Paper not yet in RePEc: Add citation now
Naik, J., Dash, P. K., & Dhar, S. (2019). A multi‐objective wind speed and wind power prediction interval forecasting using variational modes decomposition based multi‐kernel robust ridge regression. Renewable Energy, 136, 701–731. https://doi.org/10.1016/J.RENENE.2019.01.006.
- Noorollahi, Y., Jokar, M. A., & Kalhor, A. (2016). Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. Energy Conversion and Management, 115, 17–25. https://doi.org/10.1016/J.ENCONMAN.2016.02.041.
Paper not yet in RePEc: Add citation now
- Qin, J., Yang, J., Chen, Y., Ye, Q., & Li, H. (2021). Two‐stage short‐term wind power forecasting algorithm using different feature‐learning models. Fundamental Research, 1(4), 472–481. https://doi.org/10.1016/J.FMRE.2021.06.010.
Paper not yet in RePEc: Add citation now
- Sett, S. K., Hazra, S., & Ghosh, A. (2020). A fuzzy clustering algorithm influenced by validity indices (FCVI) for recognizing the differentially expressed cancer mediating genes. Meta Gene, 23, 100615. https://doi.org/10.1016/J.MGENE.2019.100615.
Paper not yet in RePEc: Add citation now
- Shang, Z., Chen, Y., Chen, Y., Guo, Z., & Yang, Y. (2023). Decomposition‐based wind speed forecasting model using causal convolutional network and attention mechanism. Expert Systems with Applications, 223, 119878. https://doi.org/10.1016/J.ESWA.2023.119878.
Paper not yet in RePEc: Add citation now
- Shen, Z., Fan, X., Zhang, L., & Yu, H. (2022). Wind speed prediction of unmanned sailboat based on CNN and LSTM hybrid neural network. Ocean Engineering, 254, 111352. https://doi.org/10.1016/J.OCEANENG.2022.111352.
Paper not yet in RePEc: Add citation now
- Singh, S. N., & Mohapatra, A. (2019). Repeated wavelet transform based ARIMA model for very short‐term wind speed forecasting. Renewable Energy, 136, 758–768. https://doi.org/10.1016/j.renene.2019.01.031.
Paper not yet in RePEc: Add citation now
- Soman, S. S., Zareipour, H., Member, S., Malik, O., & Fellow, L. (2010). A review of wind power and wind speed forecasting methods with different time horizons. 1–8. papers3:publication/uuid/01A9077B‐50C8‐47AB‐9F17‐B4E94F80DFDF.
Paper not yet in RePEc: Add citation now
- Sun, W., & Liu, M. (2016). Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China. Energy Conversion and Management, 114, 197–208. https://doi.org/10.1016/J.ENCONMAN.2016.02.022.
Paper not yet in RePEc: Add citation now
- Syama, S., Ramprabhakar, J., Anand, R., & Guerrero, J. M. (2023). A hybrid extreme learning machine model with Lévy flight chaotic whale optimization algorithm for wind speed forecasting. Results in Engineering, 19, 101274. https://doi.org/10.1016/J.RINENG.2023.101274.
Paper not yet in RePEc: Add citation now
Wang, H. Z., Li, G. Q., Wang, G. B., Peng, J. C., Jiang, H., & Liu, Y. T. (2017). Deep learning based ensemble approach for probabilistic wind power forecasting. Applied Energy, 188, 56–70. https://doi.org/10.1016/J.APENERGY.2016.11.111.
Wang, H., Han, S., Liu, Y., Yan, J., & Li, L. (2019). Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system. Applied Energy, 237, 1–10. https://doi.org/10.1016/J.APENERGY.2018.12.076.
- Wang, J., Wang, Y., Li, Z., Li, H., & Yang, H. (2020). A combined framework based on data preprocessing, neural networks and multi‐tracker optimizer for wind speed prediction. Sustainable Energy Technologies and Assessments, 40(March), 100757. https://doi.org/10.1016/j.seta.2020.100757.
Paper not yet in RePEc: Add citation now
- Wang, J., Zhang, L., Niu, X., & Liu, Z. (2020). Effects of PM2.5 on health and economic loss: Evidence from Beijing‐Tianjin‐Hebei region of China. Journal of Cleaner Production, 257, 120605. https://doi.org/10.1016/j.jclepro.2020.120605.
Paper not yet in RePEc: Add citation now
- Wang, Y., Chen, T., Zhou, S., Zhang, F., Zou, R., & Hu, Q. (2023). An improved wavenet network for multi‐step‐ahead wind energy forecasting. Energy Conversion and Management, 278, 116709. https://doi.org/10.1016/J.ENCONMAN.2023.116709.
Paper not yet in RePEc: Add citation now
- Wang, Y., Wang, J., Li, Z., Yang, H., & Li, H. (2021). Design of a combined system based on two‐stage data preprocessing and multi‐objective optimization for wind speed prediction. Energy, 231, 121125. https://doi.org/10.1016/j.energy.2021.121125.
Paper not yet in RePEc: Add citation now
- Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., & Deng, S. H. (2019). Hyperparameter optimization for machine learning models based on Bayesian optimization. Journal of Electronic Science and Technology, 17(1), 26–40. https://doi.org/10.11989/JEST.1674-862X.80904120.
Paper not yet in RePEc: Add citation now
Yang, D., Sharma, V., Ye, Z., Lim, L. I., Zhao, L., & Aryaputera, A. W. (2015). Forecasting of global horizontal irradiance by exponential smoothing, using decompositions. Energy, 81, 111–119. https://doi.org/10.1016/J.ENERGY.2014.11.082.
- Yang, W., Hao, M., & Hao, Y. (2023). Innovative ensemble system based on mixed frequency modeling for wind speed point and interval forecasting. Information Sciences, 622, 560–586. https://doi.org/10.1016/J.INS.2022.11.145.
Paper not yet in RePEc: Add citation now
- Yang, W., Tian, Z., & Hao, Y. (2022). A novel ensemble model based on artificial intelligence and mixed‐frequency techniques for wind speed forecasting. Energy Conversion and Management, 252(November 2021), 115086. https://doi.org/10.1016/j.enconman.2021.115086.
Paper not yet in RePEc: Add citation now
Yang, W., Wang, J., Niu, T., & Du, P. (2019). A hybrid forecasting system based on a dual decomposition strategy and multi‐objective optimization for electricity price forecasting. Applied Energy, 235(February 2018), 1205–1225. https://doi.org/10.1016/j.apenergy.2018.11.034.
- Yang, W., Wang, J., Zhang, K., & Hao, Y. (2023). A novel air pollution forecasting, health effects, and economic cost assessment system for environmental management: From a new perspective of the district‐level. Journal of Cleaner Production, 417, 138027. https://doi.org/10.1016/J.JCLEPRO.2023.138027.
Paper not yet in RePEc: Add citation now
- Ye, L., Zhao, Y., Zeng, C., & Zhang, C. (2017). Short‐term wind power prediction based on spatial model. Renewable Energy, 101, 1067–1074. https://doi.org/10.1016/j.renene.2016.09.069.
Paper not yet in RePEc: Add citation now
- Yeh, J. R., Shieh, J. S., & Huang, N. E. (2010). Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Advances in Adaptive Data Analysis, 2(2), 135–156. https://doi.org/10.1142/S1793536910000422.
Paper not yet in RePEc: Add citation now
- Yu, C., Li, Y., Bao, Y., Tang, H., & Zhai, G. (2018). A novel framework for wind speed prediction based on recurrent neural networks and support vector machine. Energy Conversion and Management, 178, 137–145. https://doi.org/10.1016/J.ENCONMAN.2018.10.008.
Paper not yet in RePEc: Add citation now
- Zhang, J., Yan, J., Infield, D., Liu, Y., & Lien, F.‐s. (2019). Short‐term forecasting and uncertainty analysis of wind turbine power based on long short‐term memory network and Gaussian mixture model. Applied Energy, 241(January), 229–244. https://doi.org/10.1016/j.apenergy.2019.03.044.
Paper not yet in RePEc: Add citation now
- Zhang, S., Wang, C., Liao, P., Xiao, L., & Fu, T. (2022). Wind speed forecasting based on model selection, fuzzy cluster, and multi‐objective algorithm and wind energy simulation by Betz's theory. Expert Systems with Applications, 193, 116509. https://doi.org/10.1016/J.ESWA.2022.116509.
Paper not yet in RePEc: Add citation now
- Zhang, Y., Zhao, Y., Kong, C., & Chen, B. (2020). A new prediction method based on VMD‐PRBF‐ARMA‐E model considering wind speed characteristic. Energy Conversion and Management, 203(June 2019), 112254. https://doi.org/10.1016/j.enconman.2019.112254.
Paper not yet in RePEc: Add citation now
Zhao, J., Guo, Z. H., Su, Z. Y., Zhao, Z. Y., Xiao, X., & Liu, F. (2016). An improved multi‐step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Applied Energy, 162, 808–826. https://doi.org/10.1016/j.apenergy.2015.10.145.
- Zhao, L. T., Miao, J., Qu, S., & Chen, X. H. (2021). A multi‐factor integrated model for carbon price forecasting: Market interaction promoting carbon emission reduction. Science of the Total Environment, 796, 149110. https://doi.org/10.1016/j.scitotenv.2021.149110.
Paper not yet in RePEc: Add citation now
Zhao, X., Wang, C., Su, J., & Wang, J. (2019). Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system. Renewable Energy, 134, 681–697. https://doi.org/10.1016/j.renene.2018.11.061.
- Zheng, Y., Dong, B., Liu, Y., Tong, X., & Wang, L. (2021). Multistep wind speed forecasting based on a hybrid model of VMD and nonlinear autoregressive neural network. Journal of Mathematics, 2021, 1–9. https://doi.org/10.1155/2021/6644668.
Paper not yet in RePEc: Add citation now
Zhou, Q., Wang, C., & Zhang, G. (2019). Hybrid forecasting system based on an optimal model selection strategy for different wind speed forecasting problems. Applied Energy, 250, 1559–1580. https://doi.org/10.1016/J.APENERGY.2019.05.016.
- Zhu, S., Qiu, X., Yin, Y., Fang, M., Liu, X., Zhao, X., & Shi, Y. (2019). Two‐step‐hybrid model based on data preprocessing and intelligent optimization algorithms (CS and GWO) for NO2 and SO2 forecasting. Atmospheric Pollution Research, 10(4), 1326–1335. https://doi.org/10.1016/j.apr.2019.03.004.
Paper not yet in RePEc: Add citation now
- Zhu, S., Yuan, X., Xu, Z., Luo, X., & Zhang, H. (2019). Gaussian mixture model coupled recurrent neural networks for wind speed interval forecast. Energy Conversion and Management, 198, 111772. https://doi.org/10.1016/J.ENCONMAN.2019.06.083.
Paper not yet in RePEc: Add citation now